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Abstract
We review the role of strong electronic correlations in quasi-two-dimensional
organic charge transfer salts such as (BEDT-TTF)2X, (BETS)2Y, and β ′-
[Pd(dmit)2]2Z. We begin by defining minimal models for these materials. It is
necessary to identify two classes of material: the first class is strongly dimerized
and is described by a half-filled Hubbard model; the second class is not
strongly dimerized and is described by a quarter-filled extended Hubbard model.
We argue that these models capture the essential physics of these materials.
We explore the phase diagram of the half-filled quasi-two-dimensional
organic charge transfer salts, focusing on the metallic and superconducting
phases. We review work showing that the metallic phase, which has both
Fermi liquid and ‘bad metal’ regimes, is described both quantitatively and
qualitatively by dynamical mean field theory (DMFT). The phenomenology of
the superconducting state is still a matter of contention. We critically review
the experimental situation, focusing on the key experimental results that may
distinguish between rival theories of superconductivity, particularly probes of
the pairing symmetry and measurements of the superfluid stiffness. We then
discuss some strongly correlated theories of superconductivity, in particular
the resonating valence bond (RVB) theory of superconductivity. We conclude
by discussing some of the major challenges currently facing the field. These
include parameterizing minimal models, the evidence for a pseudogap from
nuclear magnetic resonance (NMR) experiments, superconductors with low
critical temperatures and extremely small superfluid stiffnesses, the possible
spin-liquid states in κ-(ET)2Cu2(CN)3 and β ′-[Pd(dmit)2]2Z, and the need for
high quality large single crystals.
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0953-8984/06/450827+40$30.00 © 2006 IOP Publishing Ltd Printed in the UK R827

http://dx.doi.org/10.1088/0953-8984/18/45/R03
mailto:powell@physics.uq.edu.au
http://stacks.iop.org/JPhysCM/18/R827


R828 Topical Review

Contents

1. Motivation and scope 828
2. Minimal models 830

2.1. Quarter-filled charge transfer salts—the β ′′ and θ phases 830
2.2. Half-filled charge transfer salts—the β , β ′, κ and λ phases 831
2.3. Half-filled charge transfer salts with magnetic anions 833
2.4. Multiband charge transfer salts—the α phase 833
2.5. Quasi-one-dimensional charge transfer salts 833

3. The metallic state 833
3.1. The bad metal and dynamical mean field theory 834

4. The Mott transition 837
4.1. The critical point 837

5. The superconducting state 839
5.1. Pairing symmetry (evidence for additional symmetry breaking) 840
5.2. Possible probes of the pairing symmetry 846
5.3. Superfluid stiffness (evidence for a non-BCS ground state and pairing

mechanism) 849
6. Strongly correlated models of superconductivity: frustration and RVB 851
7. The phase diagram of the Hubbard model on the anisotropic triangular lattice 852

7.1. The Mott transition 852
7.2. The superconducting states 852
7.3. The insulating states 854

8. Some outstanding problems 854
8.1. Deducing parameters for the minimal models from first principles electronic

structure calculations 854
8.2. Is there a pseudogap? 855
8.3. Low Tc materials 858
8.4. Synthetic chemistry 858
8.5. Do κ-(ET )2Cu2(C N)3 and/or β ′-[Pd(dmit)2]2 Z have spin-liquid ground

states? 858
9. Conclusions 860
Acknowledgments 861
References 861

1. Motivation and scope

The Drude, Sommerfeld and Bloch models explain many of the properties of elemental metals
and alloys in terms of a theory of non-interacting electrons. This is somewhat surprising as
for typical metals the radius of a sphere whose volume is equal to the volume per conduction
electron is of order 1 Å [1]. Thus, one naively expects that the Coulomb interaction between
electrons will be large. Therefore, one of the most significant achievements in condensed
matter theory is Landau’s theory of Fermi liquids [2], which explains, through the idea of
adiabatic continuity, why the Coulomb interaction simply renormalizes the weakly interacting
electron gas.

However, in many ‘strongly correlated’ systems, interactions qualitatively alter the
behaviour of the material. For example, in the Kondo effect the interactions between
the conduction electrons and magnetic impurities, which leads to a logarithmic increase in
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the resistivity at low temperatures, cannot be described by perturbation theory from the
Fermi liquid state [3]. Indeed even the BCS state [4] is not adiabatically connected to
the Fermi liquid ground state. The Kondo effect is now well understood, but many other
strongly correlated phases are not, e.g., high temperature superconductivity and the pseudogap
in the cuprates [5], colossal magnetoresistance in the manganites [6] and emergence of
unconventional superconductivity in heavy fermion materials [7].

The non-perturbative nature of strongly correlated materials presents several major
challenges to theory. For example, some big questions are the following. What is the
appropriate description of the metallic state when the system is near to an instability to a Mott
insulating state? What are the connections between magnetic ordering and unconventional
superconductivity? Under what conditions can an antiferromagnet have a spin-liquid ground
state and/or spinon excitations? When superconductivity is found near a Mott transition, what
is the relationship between the symmetry of the superconducting state and the ground state of
the parent Mott insulator? What is the appropriate microscopic description of a metallic state
with a pseudogap? What are the mechanisms responsible for unconventional superconductivity
and what are the appropriate microscopic descriptions of such states? Many of these questions
are deeply intertwined.

Organic charge transfer salts are excellent model systems in which to study many of the
questions about the strongly correlated phenomena described above. Band structure suggests
that these materials should be metals at all experimentally relevant pressures and temperatures.
However, as we will discuss below, the observed phases include Mott insulators, Néel
antiferromagnets, spin liquids, (unconventional) superconductors, Fermi liquids, a pseudogap
and a ‘bad metal’. Further, organic chemistry allows the organic charge transfer salts to be
subtly tuned in ways that have never been achieved in inorganic materials. A rather beautiful
example of this is that in κ-(ET)2Cu[N(CN)2]Br the Mott transition can be driven by replacing
the eight hydrogen atoms in the ET molecule with deuterium [8]. Indeed, the chemistry can
be controlled to such an extent that the number of H/D atoms on each ET molecule can be
varied uniformly throughout the entire sample, allowing one to move gradually across the Mott
transition and observe the coexistence of the insulating and superconducting phases expected
because the transition is first order [9].

We will argue below that, despite the chemical complexity of the organic charge transfer
salts, the physics boils down to that of the Hubbard model on various lattices and at either
half or one-quarter filling. We will show that the strongly correlated physics of the various
polymorphs and chemical constituents can be described within this framework.

The Hamiltonian of the one-band Hubbard model is

ĤHubbard = −
∑

i j,σ

(ti j + μδi j)ĉ
†
iσ ĉ jσ + U

∑

i

n̂i↑n̂i↓, (1)

where ti j is the hopping integral from site i to site j , μ is the chemical potential, U is the
Coulomb repulsion caused by putting two electrons on the same site, ĉ(†)iσ annihilates (creates)
an electron on site i with spin σ and the number operator n̂iσ = ĉ†

iσ ĉ jσ . The Hubbard model
is, perhaps, the simplest model that can describe strongly correlated physics and is therefore an
important starting point for a complete and general description of strong correlations. Further,
the Hubbard model is also believed to describe the essential physics of, for example, the
cuprates [10] and the cobaltates [11].

At some points later in this review we will also wish to discuss extended Hubbard
models. In particular, we will discuss the Coulomb repulsion when two electrons are placed
on neighbouring sites; we will refer to these as ‘V ’ terms and the additional term in the
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Hamiltonian will be

ĤV = V
∑

〈i j〉
(n̂i↑ + n̂i↓)(n̂ j↑ + n̂ j↓), (2)

where the angled brackets indicate the sum is over some specified set of neighbouring sites,
e.g. nearest neighbours only. Another important term we may wish to include is the Heisenberg
exchange or ‘J ’ term

ĤJ = J
∑

〈i j〉
Ŝi · Ŝ j , (3)

where the spin operator is Ŝi = ∑
αβ ĉ†

iα �σαβ ĉiβ and �σ = (σx , σy, σz) is the vector of Pauli
matrices. Lastly we may wish to include phonons and the electron–phonon interaction in the
model. The simplest approach is to include the ‘Holstein’ terms which treat dissipationless
phononic modes via the terms

ĤHolstein =
∑

iσν

gν
(

â†
iν + âiν

)
n̂iσ +

∑

iν

ων â
†
iν âiν, (4)

where the â(†)iν operators annihilate (create) a phonon in the νth mode on the i th lattice site, ων
is the characteristic frequency of the νth mode and gν is the electron–phonon coupling between
an electron on site i and a phonon in the νth mode on site i .

This review is not intended to be comprehensive. Rather, we present our views of the
physics relevant to understanding these materials. This is not to say that we are the originators
of all of these ideas, but rather to stress that, as with any healthy research field, there are a
number of prominent researchers who might disagree with the views expressed here. Space
constraints will not permit us to discuss rival theories and interpretations of data at length, we
therefore refer interested readers to some alternative points of view [12–14] and some more
comprehensive reviews [15].

2. Minimal models

In this review we will mostly consider materials with chemical formulae of the form D2X,
where D is an organic donor molecule, for example bis(ethylenedithio)tetrathiafulvalene
(C10S8H8, often abbreviated as BEDT-TTF or ET) or bis(ethylenedithio)tetraselenafulvalene
(C10Se8H8, BETS), and X is an anion, e.g. I3 or Cu[N(CN)2]Br. The anion accepts one electron
from a pair of donor molecules, which leads, at the level of band theory, to an insulating anionic
layer and a metallic donor layer. The chemical complexity of the organic charge transfer salts
means that few first principles calculations have been reported [16–20]. However, these suggest
that a tight binding or Huckel description of the band structure is a reasonable approximation.
In this tight binding description a molecule serves as a ‘site’ [21].

2.1. Quarter-filled charge transfer salts—the β ′′ and θ phases

It is clear that in the model proposed by Kino and Fukyama [21] (described above) one expects
that there should be, on average, half a hole per site. This is indeed the case for the β ′′ and θ
polymorphs. These show a subtle competition between metallic, charge ordered insulating and
superconducting phases [22, 23]. It has been argued that this arises due to the competition of
spin and charge fluctuations. These effects have been studied in the extended Hubbard (t–J ′–
V –U )1 model on a square lattice [22, 23]. The importance, for the superconducting state, of

1 The J ′ indicates that the exchange term is to next nearest neighbours. The J term can be neglected because in (or
near) the charge ordered phase the are no (few) occupied sites with occupied nearest neighbours.
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Figure 1. A sketch illustrating why the band structure of the half-filled layered organic charge
transfer salts is approximately that of the anisotropic triangular lattice. Black circles indicate the
dimers; the hopping integral between the two molecules in a dimer is the largest energy scale in
the problem and can be integrated out of the effective low energy Hamiltonian, leaving the dimers
as effective sites in a Hubbard model description of the electronic degrees of freedom. The largest
hopping integrals between the dimers, t and t ′, are indicated by the maroon/thin black lines and
blue/thick dark lines. These form an anisotropic triangular lattice. In this review we take the x and
y axes of the anisotropic triangular lattice to lie along the directions of the two t hopping integrals
as this is conventional in the field. This figure is based on the crystallographic data of Rahal et al
for κ-(ET)2Cu(NCS)2 (a typical half-filled organic charge transfer salt) [26].

the fact that the actual lattice has a rather lower symmetry than the square lattice has also been
stressed recently [24].

2.2. Half-filled charge transfer salts—the β , β ′, κ and λ phases

In the β , β ′, κ and λ polymorphs there is a single intermolecular hopping integral that is
significantly larger than the others. This led Kino and Fukuyama [21] to propose that these
two molecules behave as a single site, as the hopping between them is rapid enough that it can
be integrated out of the effective low energy theory. The two molecules are often referred to
as a ‘dimer’. However, it is important to note that this does not imply that the molecules are
covalently bonded in the conventional use of the word; i.e., there are no C–C, S–S or S–C bonds
between the two molecules. Rather, the ‘bond’ is between the molecular orbitals themselves;
this ‘bond’ results because of the significant overlap between the highest occupied molecular
orbitals (HOMOs) on the two molecules, and the fact that the HOMOs are partially occupied.
Thus the ‘bond’ between the two molecules forming the dimer is highly analogous to a covalent
bond between atoms. The dimer structure is sketched in figure 1; also shown are the interdimer
hopping integrals. Kino and Fukuyama gave a parameterization of t and t ′, the interdimer
hopping integrals, in terms of the intermolecular hopping integrals. It was later realized that
this needed to be corrected to allow the strong Coulomb repulsion between two holes on the
same molecule [25]. The interdimer hopping integrals form an anisotropic triangular lattice.
Thus geometrical frustration may be expected to play a significant role if t ′ ∼ t .
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Figure 2. A schematic pressure–temperature phase diagram of κ-(ET)2X. The first order Mott
transition is shown as a thick line, while second order transitions are thin lines and crossovers are
dashed lines. The effective ‘chemical’ pressure for different anions, X, is indicated by the arrows
on the abscissa. P = 0 corresponds to ambient pressure for X = Cu[N(CN)2]Cl (abbreviated
as H8-Cl in the diagram). H8-NCS indicates the effective chemical pressure for X = Cu(NCS)2
(relative to that for X = Cu[N(CN)2]Cl) and H8-Br indicates the effective chemical pressure for
X = Cu[N(CN)2]Br. D8-Br indicates the effective chemical pressure of X = Cu[N(CN)2]Br with
the ET molecule fully deuterated. (Modified from [30].)

The phase diagram of the κ phase materials (the best studied of the half-filled organic
charge transfer salts) is sketched in figure 2. It is clear that this phase diagram cannot result from
the non-interacting model described above. However, there is a strong Coulombic repulsion
between two holes on dimer [27]. Therefore, we believe that the Hubbard model may be
the simplest model which contains the physics required to describe these systems [21, 25].
Kanoda [28] proposed that the role of pressure is to decrease U/W where W is the bandwidth.
As different anions lead to different behaviours (and different unit cell volumes) in much the
same way as pressure, this can be thought of as a effective ‘chemical pressure’. This idea has
proven an extremely powerful framework in which to assimilate the great deal of experimental
data now available for these systems.

An often used estimate of U comes from modelling the dimer in a two site Hubbard model
with an intermolecular hopping integral, tm , and a Hubbard repulsion Um for having two holes
on the same molecule. In the limit Um 	 4tm this model yields U ≈ 2tm [25]. However, this is
rather misleading because quantum chemistry calculations suggest that the Coulomb repulsion
between holes on neighbouring molecules in the same dimer Vm is of the order of Um [27].
Thus this term should be included and therefore the extended (tm–Um–Vm) Hubbard model
should be used to estimate U [29]. It is straightforward to show [29] that this model yields

U = 1
2

(
Um + Vm − [{Um − Vm}2 + 16t2

m

]1/2 + 4tm
)

(5)

and in the appropriate limit, (Um + Vm) 	 (Um − Vm), tm , we obtain

U ≈ 1
2 (Um + Vm) 	 2tm . (6)

Taking the values of Um , Vm and tm reported by Fortunelli et al [16] we see that equation (5)
gives U = 3.7 eV; this is approximated reasonably well by equation (6), which gives
U = 4.8 eV, whereas 2tm = 0.56 eV, which is the wrong order of magnitude. Thus we
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see that the plain two site Hubbard (tm–Um) model significantly underestimates U . A more
detailed discussion of the calculation of the parameters of the Hubbard model will be given in
section 8.1. In particular, that section will discuss the fact that the U in vacuo (equation (5)) is
significantly larger than that in the crystal due to the polarizability of the lattice.

The majority of the remainder of this review with be devoted to these half-filled systems.
But first we briefly mention three other classes of organic charge transfer salts.

2.3. Half-filled charge transfer salts with magnetic anions

An interesting class of organic charge transfer salts has been prepared with magnetic anions.
Prominent examples include κ-(BETS)2FeCl4 and λ-(BETS)2FeCl4. Perhaps the most
novel phenomenon observed in these salts is field induced superconductivity [31], where
superconductivity is not observed at zero field but emerges when a large (>15 T) field is
applied. This occurs due to the Jaccarino–Peter effect [32], which can be described using
the Hubbard–Kondo model [33], in which a Kondo term (to describe the magnetic anions) is
added to the Hubbard model described in section 2.2. For a recent review of these materials
see [34].

2.4. Multiband charge transfer salts—the α phase

The α phase salts have a complex band structure in which many bands cross the Fermi
level [35]. Thus they cannot be described in the one-band framework which is relevant to
the other organic charge transfer salts. These salts have many interesting properties, such as
charge ordering, an unconventional metallic state and superconductivity [15]. However, space
will not permit us to discuss them at length here.

2.5. Quasi-one-dimensional charge transfer salts

Finally, some organic charge transfer salts, e.g., the Bechgaard and Fabre salt families, are
significantly anisotropic in all three directions and are therefore often described as quasi-one-
dimensional conductors. Typically, the hopping integrals are an order of magnitude larger in
the intrachain direction than in the interchain direction, while the interchain hopping integrals
are an order of magnitude larger than those interplane [36]. These materials show many
interesting behaviours, such as spin and charge density waves, superconductivity, possible
Luttinger liquid phases, Mott insulating states, spin–Peierls states, antiferromagnetism and
Fermi liquid behaviour [37]. A key question is which of the phenomena arise from the quasi-
one-dimensionality of the system and for which properties higher dimensional models are
required to understand the behaviour.

For the remainder of this review we will discuss the half-filled organic charge transfer salts
introduced in section 2.2 unless explicitly stated otherwise.

3. The metallic state

The metallic state is of fundamental importance. Firstly, the organic charge transfer salts exhibit
an unconventional metallic state which is of great interest in its own right. Furthermore, many
states of matter occur as instabilities in the metallic state: think, for example, of the Stoner and
Cooper instabilities. Thus, for example, the difficulties in understanding the metallic state of the
cuprates have greatly compounded the difficulties in explaining the origin of high temperature
superconductivity.
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Many features of the metallic states of the organic charge transfer salts seem to agree
remarkably well with the predictions of dynamical mean field theory (DMFT). In particular,
a number of experiments show the features predicted to occur in the crossover from a Fermi
liquid to a ‘bad metal’ described by DMFT. However, there remain features of the metallic state
that are not well understood. For example, NMR experiments show features consistent with a
pseudogap, suggesting similarities to the underdoped cuprates (see section 8.2). We will only
give a very brief discussion of DMFT itself so as to focus on the results and the comparison
with experiment. However, both a brief, accessible introduction to DMFT [38] and a more
complete technical review [39] are available in the literature.

3.1. The bad metal and dynamical mean field theory

The low temperature metallic states of the organic charge transfer salts are exceptionally pure
Fermi liquids. This is indicated most clearly by the observation of quantum oscillations and
angle-resolved magneto-resistance oscillations (AMRO) [40, 41], which demonstrate that the
electron transport is coherent (at least within the planes) and that the quasiparticle lifetime is
extremely long. At low temperature the resistivity varies like ρ(T ) = ρ0+AT 2 [15, 42, 14, 43],
which is the behaviour expected of a Fermi liquid when electron–electron interactions are the
dominant scattering mechanism [44, 45].

However, the temperature dependence of the resistivity (shown in figure 3) is very different
from what is expected for simple metals (where ρ(T )monotonically decreases as T is lowered).
Instead at high temperatures the resistivity increases as the temperature is lowered, reaching
a broad maximum, and the quadratic temperature dependence is only observed below about
30 K. If the mean free path is less than the lattice spacing it is not meaningful to speak of
a coherent wavevector which describes the electronic transport. This condition allows us to
define the Mott minimum conductivity [46] (also known as the Mott–Ioffe–Regel limit), which
is of order 103 S cm−1 for κ-(ET)2Cu(NCS)2. In contrast, the conductivity at the peak in the
resistivity is ∼1 S cm−1 (cf figure 3). However, below the peak the resistivity does decrease
monotonically, thus this state is described as a ‘bad metal’. Bad metal behaviour is also seen
in the alkali doped fullerides [47], Sr2RuO4 [48], SrRuO3 [49], and VO2 [50]. All of these
systems are strongly correlated materials ‘near to’ a Mott transition. No Drude peak is evident
in the optical conductivity of the organic charge transfer salts above about 50 K [51]. Further,
even at low temperatures where a ‘Drude-like’ feature does appear, this can only be fitted to
the Drude form by introducing a frequency dependence to the scattering rate and the effective
mass [51]. On the other hand a broad, high frequency peak is observed at all temperatures. This
is suppressed somewhat at low temperatures.

The DMFT of the Hubbard model provides a description of all of this physics [54, 52].
DMFT works by mapping the Hubbard model onto the Anderson model for a single magnetic
impurity in a bath of conduction electrons [39, 38]. This procedure is exact in the limits
of infinite spatial dimensions or infinite lattice coordination number. For half-filled systems
close to a Mott transition DMFT predicts a Fermi liquid at low temperatures, and a crossover
to incoherent transport as the temperature is raised. The crossover temperature scale, Tcoh,
is related to the destruction of Kondo screening and Fermi liquid behaviour with increasing
temperature (above the Kondo temperature TK) in the Anderson model. In the Anderson model
the conduction electrons are strongly scattered by a (localized) magnetic impurity for T > TK.
But for T < TK a quantum coherent singlet forms between the impurity and the conduction
electrons [3]. In the DMFT of the Hubbard model for T > Tcoh the electrons are quasi-localized
and the electrons on the single site treated exactly strongly scatter those in the bath. However,
for T < Tcoh transport is coherent and the electrons only scatter one another weakly, thus
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Figure 3. Non-Fermi-liquid behaviour in the resistivity and thermopower of half-filled quasi-two-
dimensional organic charge transfer salts. The circular data points in the left panel show the non-
monotonic temperature dependence of the resistivity, ρ, in κ-(ET)2Cu[N(CN)2]Cl (to be contrasted
with the monotonic behaviour predicted by band theory). At low pressure a broad maximum is
observed in the resistivity, as is predicted by dynamical mean field theory (DMFT) (shown as
rhomboidal data points). As the pressure is increased, the broad maximum is suppressed and
eventually becomes entirely absent. DMFT reproduces these trends if pressure is taken to control
the relative interaction strength (P ∼ W/U [28]). These data are taken from [52]. The right
panel shows the temperature dependence of the thermopower, S, in the highly conducting plane of
κ-(ET)2Cu[N(CN)2]Br (taken from [53]). The details of the non-interacting band structure dictate
that the thermopower is positive when the heat current is parallel to the a axis and negative when
the heat current is parallel to the c axis. However, along both axes the thermopower has a broad
extremum at around the same temperature as the maximum in the resistivity occurs in the left panel.
These extrema in the thermopower are predicted by DMFT [54] with U ∼ W , whereas one expects
the thermopower to be monotonic in a system with weakly interacting quasiparticles. Thus these
two experiments, which do not have a natural explanation in a Fermi liquid picture, are explained
by the crossover from a ‘bad metal’ at high temperatures to a Fermi liquid at lower temperatures
described by DMFT.

Fermi liquid behaviour is regained. This is why, for example, the temperature dependences of
the resistivities of the Anderson and Hubbard models are so similar [3, 39]. DMFT predicts
that there is no Drude peak in the bad metal phase and that most of the spectral weight is
contained in high energy features. This is because much of the spectral weight is transferred to
the ‘Hubbard bands’ that will emerge in the Mott insulating state [39, 38]. This prediction is
clearly in good agreement with the optical conductivity measurements [51] described above.

The success of DMFT in describing the transport properties and the phase diagram of
many organic charge transfer salts down to temperatures of about 10 K (where, for example,
superconductivity becomes important) has been rather puzzling, until recently [11], given
that these materials are quasi-two-dimensional and that DMFT is only expected to be a good
approximation in the limit of high spatial dimension or high co-ordination number. However,
the applicability of DMFT to low dimensional systems with large frustration is consistent with
the fact that for frustrated magnetic models a Curie–Weiss law holds down to a much lower
temperature than for unfrustrated models [55, 56]. Deviations from Curie–Weiss behaviour
result from spatially dependent correlations. Hence, we expect that a DMFT treatment of
the Hubbard model on frustrated lattices will be a good approximation down to much lower
temperatures than it is for unfrustrated models.
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However, DMFT is not simply a theory for describing the conductivity: good agreement
with experiment is found for many other properties. For example, measurements of the linear
coefficient of the specific heat, γ , of κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2 [57] show
that the effective mass, m∗, is several (three to five) times that predicted by band theory [58].
Similar effective masses are found in quantum oscillation experiments [41, 40]. DMFT predicts
this large mass enhancement. This is a result of the strong electronic correlations.

Experimentally, the thermopower, shown in figure 3, in the highly conducting (ac) plane
of κ-(ET)2Cu[N(CN)2]Br is positive (negative) in the a (c) direction2. The thermopower,
S, shows a broad maximum (minimum) at around 100 K (60 K) [53], i.e. at about the same
temperature the resistivity shows a maximum (figure 3). The thermopower predicted for
a weakly interacting metallic state with the band structure of κ-(ET)2Cu[N(CN)2]Br is ∼5
times smaller than that observed experimentally [53, 25]. DMFT predicts an extremum in the
thermopower at T ∼ Tcoh for large U/W [54] and the large effective mass predicted by DMFT
gives rise to the large thermopower as S/T ∝ m∗, in good agreement with experiment.

A strong decrease in the ultrasonic velocity is observed at temperatures ∼40 K
in κ-(ET)2Cu[N(CN)2]Br [59], κ-(ET)2Cu(NCS)2 [59] and κ-(ET)2Cu[N(CN)2]Cl (under
pressure [60]). The pressure (and chemical pressure) dependence of the temperature at which
these anomalies are observed shows that they occur at the same temperature as the other
anomalies that, we have argued above, correspond to Tcoh. Does this then suggest that phonons
play an important role in this physics? DMFT shows that this is not the case. DMFT studies
of the Hubbard–Holstein model [61, 62] in the limit where the electron–electron interactions
are much stronger than the electron–phonon interactions (U 	 g) predict phonon anomalies
at Tcoh. However, these anomalies are parasitic: the changes in the behaviour of the electrons
cause the change in the behaviour of the lattice vibrations because of the electron–phonon
coupling, and the phonons do not play a significant role in driving the crossover from the Fermi
liquid to the ‘bad metal’.

The Sommerfeld–Wilson ratio is defined as RW = [χ(T = 0)γ0]/(γ χ0), where χ(T )
is the magnetic susceptibility, χ0 is the zero temperature magnetic susceptibility of the non-
interacting electron gas and γ0 is the linear coefficient of the heat capacity for the non-
interacting electron gas. Clearly for the non-interacting system RW = 1, but the Kondo model
predicts RW = 2. Therefore, as DMFT exploits the deep connections between Kondo physics
and the Mott–Hubbard transition, DMFT predicts RW > 1 in the organics. Experimentally, RW

is 1.5 ± 0.2 in both κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2 [63].
The Kadowaki–Woods ratio is RKW = A/γ 2, where A is the quadratic coefficient of

the resistivity. In many strongly correlated materials RKW ∼ 10.5 μ� cm K2 mol2 J−2.
The Kadowaki–Woods ratio is significantly larger than this in the half-filled layered organic
materials, even when differences in the unit cell volume are allowed for [64, 65]. This has led
to suggestions that the quadratic temperature dependence of the resistivity may not result from
strong electronic correlations, but from phonons [14, 66]. However, one must be careful to
allow for the fact that the only reliable resistivity measurements in the organic charge transfer
salts are perpendicular to the highly conducting plane. When this is allowed for, the observed
Kadowaki–Woods ratio is the expected order of magnitude [65].

Collectively, the experiments described above (and those studying the Mott transition,
which we review in section 4) show that a weakly interacting, Fermi liquid, description is
not sufficient to explain the full temperature dependence of the thermodynamic and transport
properties of the half-filled organic charge transfer salts. However, DMFT, which includes the

2 The sign difference results from the details of the band structure of κ-(ET)2Cu[N(CN)2]Br and corresponds to
hole- (electron-) like conduction along the a (c) directions [53].
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effects of strong electron–electron interactions, and reproduces Fermi liquid theory below Tcoh,
can provide both a quantitative [52] and qualitative [54] description of the full temperature
dependence. However, DMFT is a purely local theory. Therefore, any properties with a
significant k-dependence will not be properly described by DMFT. We will discuss some such
possible features in section 8.2.

4. The Mott transition

DMFT also provides a description of the (first order) Mott metal–insulator transition [38, 39].
For U = 0 the density of states (DOS) calculated from DMFT is, as one should expect, that
of the tight binding model. For a weakly interacting system the DOS will be only weakly
renormalized by the interactions. However, as U is turned on the system becomes strongly
interacting and a peak in the DOS will emerge at the Fermi energy. This peak is associated with
quasiparticles. The total spectral weight associated with the quasiparticles is Z = mb/m∗ < 1,
where mb is the band mass of the electron, hence Z is called the quasiparticle weight. The
remainder of the spectral weight is transferred to two broad bands centred on ±U/2 of width
∼W , known as the Hubbard bands. The Hubbard bands correspond to quasi-localized states,
with the lower Hubbard band (centred at −U/2) corresponding to singly occupied sites and
the upper Hubbard band (centred at +U/2) corresponding to doubly occupied sites. As U
is further increased the quasiparticle peak narrows (Z decreases) and more spectral weight is
transferred to Hubbard bands. When U is increased above the critical value (∼W ) for the
Mott transition the quasiparticle peak vanishes and all of the spectral weight resides in the
Hubbard bands. There is now no density of states at the Fermi energy and so we have an
insulator. A number of studies have found that this transition is first order within the DMFT
framework [39, 67].

It is conceptually useful to compare the Mott transition in the organic charge transfer salts
(figure 2) and that predicted for the Hubbard model on the anisotropic triangular lattice by
DMFT with the liquid–gas transition. The difference between the liquid and the gas is their
densities. One may move from the gas to the liquid in one of two ways: either directly,
by increasing the pressure through a first order phase transition where the density changes
discontinuously, or by first increasing the temperature above the critical temperature and then
passing around the critical point. If one passes around the critical point no phase transition
is observed and the density varies continuously through the fluid phase. The Mott transition
behaves in much the same way. In the Mott insulator the electrons are localized and hence
the conductivity is poor whereas the metal has a large conductivity. We may either drive the
Mott transition by increasing the pressure and passing directly through the first order transition
where the degree of localization changes discontinuously, or else we may first increase the
temperature above the critical temperature where the line of first order transitions ends (see
figure 2) and thus pass continuously from the insulating phase to the metallic phase. In this
picture the ‘bad metal’ is somewhat analogous to the fluid. As we move through the ‘bad
metal’ the conductivity changes continuously as we pass from the localized behaviour of the
insulator to the coherent excitations characteristic of the Fermi liquid, although one should note
that the analogy is not exact as the ‘bad-metal’ regime extends slightly below the critical point
(cf figure 2).

4.1. The critical point

We now turn our discussion to the critical point itself. Unsurprisingly, DMFT predicts mean-
field critical exponents (see table 1). Limelette et al [68] measured the critical exponents of
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Table 1. Comparison of the critical exponents observed for some common universality classes
with those seen at the critical point of the Mott transition in κ-(ET)2Cu[N(CN)2]Cl. The symbol
X → Y indicates that the measured exponent crosses over from X in a small critical region near the
critical point, to Y in a larger region further from the critical point.

Example system β γ δ

Mean field [69] DMFT 1/2 1 3
3D Ising [69] Liquid–gas 0.33 1.24 4.8
3D XY Superconductor 0.35 1.3 4.8
3D Heisenberg Ferromagnet 0.36 1.4 4.8
2D Ising [69] Physisorption 1/8 7/4 15
Mean field at MQCP MQCP [71, 72] 1 1 2
Mean field near MQCP MQCP [72] 1 → 0.33 1 → 1.24 2 → 4.8
3D metal–insulator V2O3 [68] 0.34 → 0.5 1 5 → 3
2D metal–insulator? κ-(ET)2Cu[N(CN)2]Cl [70] 0.9–1 0.9–1 1.9–2

the Mott transition in V2O3 [68]3. They observed three dimensional (3D) Ising exponents (the
same as are seen in the liquid–gas transition), but only in a extremely narrow critical region
around the critical point (P/Pc, T/Tc � 10−2). Limelette et al observed mean-field critical
exponents except in this extremely small critical region near the critical point, which, they
argued, implies that there are bound pairs of doubly occupied and vacant sites near the Mott
transition. These bound states can exist over large length scales (of order nanometres) and
are argued to be the root cause of the success of DMFT. This is analogous to the success of
the (mean field) BCS theory of superconductors which results from the large coherence length
(and hence small critical region) in conventional superconductors.

However, recently Kagawa et al [70] have found that the critical exponents for the critical
end point of the Mott transition in κ-(ET)2Cu[N(CN)2]Cl do not correspond to either the
Ising or mean field universality classes. Indeed, the critical exponents do not belong to any
universality class that had previously been observed (see table 1). Crucially, in spite of being
very different from those for the Ising, XY or Heisenberg universality classes, the observed
exponents obey the standard scaling relation (δ − 1)β = γ , within experimental error.

Remarkably, Imada [71] had predicted these exponents from phenomenological theories
of the Mott transition. Misawa et al [72] have now shown that these critical exponents
may be derived within the Hartree–Fock approximation from the Hubbard model on the
anisotropic triangular lattice. Within the Hartree–Fock approximation the metal becomes
magnetically ordered at relatively small U/W , but the metal insulator transition does not
occur until U ∼ W . Thus there is no symmetry breaking at the metal–insulator transition
within the Hartree–Fock approximation. Misawa et al find that for 0.056 ≈ t ′

c1/t <

3 These exponents can be measured by studying the conductivity near the Mott transition. The conductivity gives
access to the critical behaviour as it is related to the thermodynamic ground state via linear response theory. The
critical exponents can be determined from the conductivity, σ , as (σ − σc) ∼ (Tc − T )β , (dσ/dP)T ∼ |T − Tc|−γ
and (σ − σc) ∼ (P − Pc)

1/δ , where σc is the conductivity at the critical point, T is the temperature, Tc is the critical
temperature, P is the pressure and Pc is the critical pressure. To interpret the order parameter exponent on the critical
isotherm, δ, one should recall that the order parameter of the Mott transition is the half-width of the coexistence curve,
which vanishes at the critical point. This is entirely analogous to the liquid–gas transition [69]. It is often stated that the
order parameter of the liquid–gas transition is the difference in the densities of the liquid and the gas. This statement
needs to be interpreted carefully. Strictly the density difference between the liquid and the gas phase when they are
in coexistence is a good order parameter. This is, of course, proportional to the half-width of the coexistence curve
because of the Maxwell equal area construction. However, the density difference when the liquid and gas are not
in coexistence is not a good order parameter. These comments are equally valid for the difference in conductivities
between the metal and insulator in the Mott transition.
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t ′/t < t ′
c2/t ≈ 0.365 a line of first order phase transitions ends at a finite temperature

critical point. At t ′
c1 and t ′

c2 this critical point is driven to T = 0 and for t ′/t < t ′
c1/t

or t ′/t > t ′
c2/t a quantum critical point is observed. t ′ = t ′

c1 and t ′ = t ′
c2 are therefore

termed marginal quantum critical points (MQCPs). At the MQCPs Misawa et al find that
the critical exponents are β = 1, γ = 1 and δ = 2, which satisfy the scaling relation
(δ − 1)β = γ , and agree with those measured by Kagawa et al [70] in κ-(ET)2Cu[N(CN)2]Cl
within experimental error. However, one should recall that these exponents are only strictly
valid at T = 0 and the critical point in κ-(ET)2Cu[N(CN)2]Cl occurs at 39.7 K—where we
might expect to regain the standard Ising critical exponents. However, Misawa et al stress
that the true critical exponents will only apply within a small critical region very close to
the phase transition and that beyond this region the observed exponents will cross over to
those characteristic of the MQCP. Misawa et al estimate that the experimental resolution of
Kagawa et al is two orders of magnitude worse than that required to see the Ising critical
behaviour. Misawa et al stress that the fact that magnetic order exists on both the insulating
and metallic sides of the phase transition is vital for their theory4. We should note that
that in κ-(ET)2Cu[N(CN)2]Cl antiferromagnetic ordering does not occur over the entirety
of the Mott insulating phase, but only at low temperatures (see figure 2). Therefore, the
Mott transition in κ-(ET)2Cu[N(CN)2]Cl is not accompanied by any symmetry breaking in
the vicinity of the critical point. Importantly, the Ginzburg criterion shows that the upper
critical dimension is two and so the mean field Hartree–Fock treatment, which neglects all
fluctuations, appears likely to be correct in cases where no symmetry is broken at the critical
point. It is important to note the role that frustration plays in this scenario as for weakly
frustrated lattices (t ′/t < t ′

c1/t or t ′/t > t ′
c2/t) these unconventional critical exponents are

not predicted.

5. The superconducting state

The organic charge transfer salts are often referred to as the organic superconductors. However,
this is somewhat misleading both because of the range of other phenomena observed in
the organic charge transfer salts and because of the range of other materials which fit the
description ‘organic superconductors’. Other organic superconductors include the alkali doped
fullerides [47], intercalated graphite [73] and ion implanted polymers [74]. However, below we
discuss only superconductivity in the quasi-two-dimensional half-filled organic charge transfer
salts.

The phrase ‘unconventional superconductivity’ has several meanings. These meanings
are best illustrated by comparison to elemental superconductors, which are described by BCS
theory [4] (or more accurately by Eliashberg theory [75] or the density functional theory of
superconductivity [76]). In these theories the electrons form Cooper pairs due to an effective
attractive interaction between electrons mediated by the exchange of phonons. The BCS state
breaks gauge symmetry but no other symmetry of the crystal. Thus the phrase ‘unconventional
superconductivity’ can be applied to any superconductor that does not satisfy any one of
these three requirements (BCS, phononic pairing mechanism and no additional symmetry
breaking) for conventional superconductivity. In this section we review the experimental
evidence, which shows that the superconductivity in the half-filled organic charge transfer salts
is unconventional in all three of the senses described above. We delay a detailed discussion of
the theory until section 6.

4 Note that Imada’s [71] phenomenological theories which predict the same exponents do so in the case of the non-
magnetic-insulator to non-magnetic-metal transition.
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5.1. Pairing symmetry (evidence for additional symmetry breaking)

In the original formulation of BCS theory [4] one assumes that the effective attractive pairwise
interaction responsible for superconductivity, V , is spatially uniform. This means that the
superconducting order parameter � is also isotropic as� = ∑

k V 〈ck↑c−k↓〉. This assumption
is somewhat unphysical, but it is straightforward to generalize BCS theory to allow for
momentum dependent effective interactions, Vk [77]. In this case we should also allow the order
parameter to develop a k-dependence by defining�k = ∑

k′ Vk−k′ 〈ck′↑c−k′↓〉. It is now natural
to ask what symmetry�k has. Note that although we have introduced these ideas in the context
of BCS theory the symmetry arguments that follow are based on basic truths about quantum
mechanics and do not depend on the details of the microscopic theory of superconductivity.
Thus symmetry analyses are a powerful framework in which to understand the phenomenology
of unconventional superconductors [24, 78, 7].

5.1.1. A brief introduction to the symmetry of pairing states. A fundamental theorem
of quantum mechanics is that the eigenstates must transform according to an irreducible
representation of the symmetry group of the Hamiltonian [79]5. This is true regardless of
the complexity of the quantum many-body Hamiltonian. Therefore, one expects on very
general grounds that the superconducting order parameter (which has the same symmetry as
the wavefunction describing the superconducting state6) will have the symmetry of a particular
irreducible representation of the group describing the symmetry of the normal state (and hence
the Hamiltonian at Tc). This argument can be made rigorous exactly at the critical temperature,
and may be expected to hold below Tc provided there are no further phase transitions.

In elemental superconductors it is found that, although�k is not completely isotropic [80],
the order parameter does have the same symmetry as the crystal. The first material found where
this did not appear to be the case was in superfluid 3He. Clearly there is no crystal in liquid
3He and so the normal state has the full symmetry of free space. Therefore, the expectation that
the order parameter will transform like a particular representation of the group describing the
symmetry of the normal state can be recast as the claim that if we expand the order parameter
in terms of the spherical harmonics, Ylm(k̂),

�k =
∞∑

l=0

l∑

m=−l

ηlm Ylm(k̂), (7)

then we will find that we only require ηlm to be finite for one particular value of l. Thus we find
that

�k =
l∑

m=−l

ηlm Ylm(k̂). (8)

It is natural to refer to superconductors in which the non-zero ηlm are l = 0 as s wave,
superconductors in which the finite ηlm are l = 1 as p wave, superconductors in which the finite
ηlm are l = 2 as d wave, and so on, by analogy with atomic physics. It has been established
that 3He is a p-wave superconductor [81].

Historically, the discovery that superfluid 3He has a lower symmetry than normal 3He
preceded any analogous discoveries in superconductors by some time. However, there are now

5 Here we neglect the possibility of accidental degeneracies as they complicate the discussion considerably, but do not
really change the physics, as the accidentally degenerate states can always be decomposed into a set of eigenstates that
transform under the operations of the group in the same way as a set of the irreducible representations of the symmetry
group of the Hamiltonian.
6 Assuming no other phase transition accompanies the superconducting transition.
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Table 2. The character table, symmetry required nodes in the superconducting energy gap and some
basis functions of the irreducible representations of the point group D4h. This is the point group of
many unconventional superconductors with tetragonal crystals, including many of the cuprates and
Sr2RuO4. We assume that the x , y and z axes are, respectively, parallel to the a, b and c axes. The
functions 1k, Xk, Yk and Zk may be any functions which transform, respectively, as 1, kx , ky and kz
under the operations of the group and satisfy translational symmetry. The operations of the group
are the identity (E), rotation by π and π/2 about the c axis (respectively Cc

2 and Cc
4), rotation by π

about the a and b axes (which have the same characters, which we therefore label Ca/b
2 ), rotation

by π about the either of the diagonal of the a–b plane (which have the same characters and are
labelled Cd

2 ), inversion (i : inversion symmetry takes k to −k), an improper by π/4 about the c axes
(Sc

4 : an improper is a rotation followed by a reflection through the plane perpendicular to the axis
of rotation), reflection through the ab plane (σ ab), reflection through the ac and bc planes (which
have the same characters, which we therefore label σ

ac
bc ), and reflection through the planes specified

by (x + y)z = 0 and (x − y)z = 0 (which have the same characters and are labelled σ dc). A brief
explanation of characters is given in the caption to table 3.

Required Example Colloquial

Irrep E Cc
4 Ca/b

2 Cd
2 Cc

2 i Sc
4 σ

ac
bc σ dc σ ab nodes basis functions names

A1g 1 1 1 1 1 1 1 1 1 1 None 1k, X2
k + Y 2

k , Z2
k s

A2g 1 1 −1 −1 1 1 1 1 −1 −1 Line XkYk(X2
k − Y 2

k ) g
B1g 1 −1 −1 1 1 1 1 −1 1 −1 Line X2

k − Y 2
k dx2−y2

B2g 1 −1 1 −1 1 1 1 −1 −1 1 Line XkYk dxy

Eg 2 −2 0 0 0 2 −2 0 0 0 None (Xk Zk,Yk Zk) (dxz , dyz)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1 None X2
kY 2

k Zk h
A2u 1 1 −1 −1 1 −1 −1 −1 1 1 Line Zk pz

B1u 1 −1 −1 1 1 −1 −1 1 −1 1 Line XkYk Zk fxyz

B2u 1 −1 1 −1 1 −1 −1 1 1 −1 Line (X2
k − Y 2

k )Zk f(x2−y2)z

Eu 2 −2 0 0 0 −2 2 0 0 0 None (Xk,Yk) (px , py)

several materials in which the superconducting state is believed to have a lower symmetry than
the normal state. These include Sr2RuO4, the cuprates, several heavy fermion materials and,
we will argue below, the layered organic charge transfer salts. One often hears statements such
as ‘the cuprates are d-wave superconductors’. It is not immediately clear what this means, as
the normal state of the cuprates does not have the full symmetry of free space (due to the crystal
lattice) and so the spherical harmonics are not an appropriate basis in which to expand the order
parameter.

In a crystal the natural basis is that of the irreducible representations of the point group
of the crystal7. (Table 2 describes the point group D4h, which is that of most cuprates and a
number of other unconventional superconductors, and tables 3–5 give three examples of point
groups relevant to the organic charge transfer salts.) In this case the order parameter may be
written as

�k =
d�∑

i=0

ηiψ
�
i (k), (9)

where ψ�i (k) are the basis functions of the �th irreducible representation and d� is the
dimension of �.

The above discussion is only valid for singlet superconductors. Triplet superconductivity
does not greatly complicate this analysis, but one does have to include a sum over the three spin
projections of the S = 1 Cooper pairs and generalize the order parameter slightly (see [7], [78]
or [82] for a careful discussion of the group theoretic classification of triplet states).

7 We assume throughout that the superconducting state does not break translational symmetry.
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Table 3. The character table, symmetry required nodes in the superconducting energy gap and some
basis functions of the irreducible representations of the point group D2h. This is the symmetry of the
orthorhombic organic superconductors such as κ-(ET)2Cu[N(CN)2]Br. We argue in section 5 that
the experimental evidence (see figures 4 and 5) shows that the superconducting order parameters of
κ-(ET)2Cu[N(CN)2]Br and other orthorhombic organic charge transfer salts transform like the B2g
representation of D2h. Thus the superconducting state may be said to be ‘dx2−y2 ’. In the colloquial
names column we include dxy , parenthetically, as a name for the A1g representation. This is not
intended to encourage the use of this name but merely to stress that order parameters transforming
like the B2g representation of D4h (which have been invoked to explain some experimental data; see,
e.g. [93]) transform according to the A1g representation of D2h and are therefore are not symmetry
distinct from ‘s-wave’ order parameters. Note that in κ-(ET)2Cu[N(CN)2]Br the highly conducting
plane is the a–c plane, and that the x and y axes are taken to lie along the same directions as the t
hopping integrals (cf figure 1), therefore ka = kx + ky and kc = kx − ky . The functions 1k, Xk,
Yk, Zk, Ak, Bk, and Ck may be any functions which transform, respectively, as 1, kx , ky , kz , ka , kb,
and kc under the operations of the group and satisfy translational symmetry. The operations of the
group are the identity (E), rotation by π about the a, b, and c axes (respectively Ca

2 , Cb
2 , and Ca

2 ),
inversion (i) and reflection through the ab, ac, and bc planes (respectively σ ab , σ ac, and σ bc). The
character is the trace of any matrix that can represent the operation in that irreducible representation
(see [79] for a detailed discussion). However, for the one-dimensional representations relevant here
the character has more physical interpretation: the character is the sign introduced in the order
parameter (and wavefunction) by that operation. For example, any order parameter transforming
according to the A1g representation will by unchanged by any of the operations of the group. On
the other hand, if the order parameter transforms according to the B2g representation (as does, for
example, �k ∼ cos kx − cos ky ), then the order parameter changes sign under rotation by π about
the a (x + y) or c (x − y) axes and reflection through the bc (x = y) and ab (x = −y) planes.

Required Colloquial
Irrep E Ca

2 Cb
2 Cc

2 i σ bc σ ac σ ab nodes Example basis functions names

A1g 1 1 1 1 1 1 1 1 None 1k, A2
k, B2

k , C2
k, XkYk s (dxy )

B1g 1 −1 −1 1 1 −1 −1 1 Line Ak Bk, (Xk + Yk)Zk d(x+y)z

B2g 1 −1 1 −1 1 −1 1 −1 Line AkCk, X2
k − Y 2

k dx2−y2

B3g 1 1 −1 −1 1 1 −1 −1 Line BkCk, (Xk − Yk)Zk d(x−y)z

A1u 1 1 1 1 −1 −1 −1 −1 None Ak BkCk, (X2
k − Y 2

k )Zk f
B1u 1 −1 −1 1 −1 1 1 −1 Line Ck, Xk + Yk p(x−y)

B2u 1 −1 1 −1 −1 1 −1 1 Line Bk, Zk pz

B3u 1 1 −1 −1 −1 −1 1 1 Line Ak, Xk − Yk p(x+y)

Thus when the statement is made that ‘the cuprates are dx2−y2 superconductors’, what is
meant is that the superconducting state transforms like the B1g representation of the group D4h

(cf table 2). However, all possible basis functions of the B1g representation of D4h vanish
along the lines kx = ±ky . Thus the nodes of the order parameter (which are often all one is
concerned with, see below and section 5.2) are the same as for the dx2−y2 spherical harmonic.
Thus, in analogy with the case of 3He, people often refer to ‘s-wave’, ‘p-wave’, or ‘d-wave’
superconductors. One should always bear in mind what this naming conventional really means,
as confusion can arise (and repeatedly has arisen) when the terms are used carelessly. However,
this terminology is all but universal and therefore we will make use of it, but we will use
inverted commas to remind the reader that an analogy is being drawn and that we really mean
a particular irreducible representation of the point group of the crystal in question.

5.1.2. Singlet or triplet? As all of the half-filled organic charge transfer salts have inversion
symmetry, singlet and triplet states are distinct [78]. Thus the first question we should ask is
whether the superconducting states of these materials are singlet or triplet. Measurements of the
13C NMR Knight shift [83–85] in κ-(ET)2Cu[N(CN)2]Br, with the magnetic field, H, parallel
to the conducting planes, show that as T → 0 so does the Knight shift. This single experiment
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Table 4. The character table, symmetry required nodes, and some basis functions of the even
parity irreducible representations of the point group C2h. This represents the symmetry of the
monoclinic organic superconductors such as κ-(ET)2Cu(NCS)2. We argue in section 5 that the
experimental evidence (see figures 4 and 5) shows that the superconducting order parameters
of κ-(ET)2Cu(NCS)2 and other monoclinic organic charge transfer salts transform like the Bg
representation of C2h. Thus the superconducting state may be said to be ‘d wave’. In the colloquial
names column we include dxy , parenthetically, as a name for the A1g representation. This is not
intended to encourage the use of this name but merely to stress that order parameters transforming
like the B2g representation of D4h (which have been invoked to explain some experimental data;
see, e.g. [93]) transform according to the A1g representation of C2h are therefore are not symmetry
distinct from ‘s-wave’ order parameters. Note that in κ-(ET)2Cu(NCS)2 the highly conducting
plane is the b–c plane, and that the x and y axes are taken to lie along the same directions as the t
hopping integrals (cf figure 1), therefore kb = kx + ky and kc = kx − ky . The functions 1k, Xk,
Yk, Zk, Ak, Bk, and Ck may be any functions which transform, respectively, as 1, kx , ky , kz , ka , kb,
and kc under the operations of the group and satisfy translational symmetry. A brief explanation of
characters is given in the caption to table 3.

Required Colloquial
Irrep E Cc

2 i σ ab nodes Example basis functions names

Ag 1 1 1 1 None 1k, A2
k, B2

k , C2
k , XkYk s (dxy )

Bg 1 −1 1 −1 Line AkCk, (Xk − Yk)Zk, BkCk, X2
k − Y 2

k d
Au 1 1 −1 −1 None Ak, Bk, Xk + Yk px+y

Bu 1 −1 −1 1 Line Ck, Xk − Yk px−y

Table 5. The character table, symmetry required nodes and some basis functions of the irreducible
representations of the point group C2v. C2v represents the symmetry of the anisotropic triangular
lattice. The functions 1k, Xk, and Yk may be any functions which transform, respectively, as 1,
kx , and ky under the operations of the group and satisfy translational symmetry. The operations in
the group are the identity, E , rotation about the z axis by π , C2, and reflection through the planes
kx = ±ky , σ± . A brief explanation of characters is given in the caption to table 3. Note that
inversion symmetry is not an operation of the group. This might suggest that singlet and triplet
states are not differentiated by symmetry. However, as we are discussing the symmetry of a two-
dimensional lattice, rotation by π (which is an operation in the group) differentiates between singlet
and triplet states.

Irrep E C2 σ+ σ− Required nodes Example basis functions Colloquial names

A1 1 1 1 1 None 1k, XkYk s, dxy , s + dxy

A2 1 1 −1 −1 Line X2
k − Y 2

k dx2−y2

B1 1 −1 1 −1 Line Xk + Yk px+y

B2 1 −1 −1 1 Line Xk − Yk px−y

does not actually rule out triplet pairing, although it does make triplet pairing extremely
unlikely. This experiment is compatible with a triplet state in which d(k) × H = 0, where
d(k) is the usual Balian–Werthamer order parameter for triplet superconductivity [86, 82].
However, Zuo et al [87] measured the critical field as a function of temperature with H parallel
to the conducting planes. In this configuration no orbital currents flow, so the critical field is
due to Clogston–Chandrasekhar (or Pauli) limit [88–90]. There is no Clogston–Chandrasekhar
limit for H ⊥ c for triplet states compatible with measured Knight shift. Thus, for such
states there would be no critical field with H ‖ b (in fact for such states one would increase
Tc by applying a field parallel to the b axis [90]). Experimentally [91], it is found that
superconductivity is destroyed by a magnetic field parallel to the b axis. Therefore, only when
considered together do the three experiments discussed above [83, 87, 91] strictly rule out triplet
pairing. Further evidence for Clogston–Chandrasekhar limiting, and hence singlet pairing,
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comes from the observation that the in plane upper critical field is independent of the field
direction [92]. Given the anisotropic nature of the Fermi surface of κ-(ET)2Cu[N(CN)2]Br, it is
extremely unlikely that orbital mechanisms for the destruction of superconductivity would be so
isotropic.

5.1.3. Spatial symmetry (‘s wave’ versus ‘d wave’). The organic charge transfer salts form
orthorhombic, monoclinic and triclinic crystals. This can lead to important differences between
their superconducting states [24, 94]. Orthorhombic crystals such as κ-(ET)2Cu[N(CN)2]Br (in
which the highly conducting plane is the a–c plane) are described by the D2h point group. There
are four irreducible representations of D2h which correspond to singlet superconductivity (see
table 3). Given the layered structure of the crystals superconductivity transforming as either the
B1g or B3g irreducible representations is unlikely [24, 78]. Therefore, our task is to differentiate
between superconducting order parameters transforming like the A1g representation (which
is often referred to as ‘s-wave’ superconductivity) and superconducting states that transform
according to the B2g representation (or ‘dx2−y2 ’ superconductivity).

There are even fewer symmetry distinct superconducting states in monoclinic crystals
such as κ-(ET)2Cu(NCS)2 (for which the highly conducting plane is the b-c plane) which
are described by the C2h point group. There are two irreducible representations of C2h

which correspond to singlet superconductivity (see table 4). Therefore, the singlet order
parameter must transform like either the Ag representation (which we may refer to as ‘s-
wave’ superconductivity) or the Bg representation (which we may refer to as ‘d-wave’
superconductivity8).

One way to differentiate between ‘s-wave’ and ‘d-wave’ states9 is to measure the low
temperature behaviour of thermodynamic variables. For an ‘s-wave’ state the superconducting
gap is finite at every point on the Fermi surface. As excitations may only take place at energies
within about kBT of the Fermi energy, thermodynamic properties are exponentially activated
at low temperatures. For example, the heat capacity Cv ∝ exp(−�0/kBT ) for T � Tc, where
�0 is the minimum value of the magnitude of the superconducting gap at the Fermi surface
at T = 0. In contrast, for a ‘dx2−y2 ’ state, symmetry requires that the superconducting order
parameter vanishes along (at) four lines (points) on a three (two) dimensional Fermi surface.
These lines (points) are known as nodes. At the nodes there are excitations with arbitrarily
low energies. Thus although density of states, D(ε), does vanish at the Fermi energy, εF, in
a ‘d-wave’ superconductor, the DOS grows linearly as we move away from the Fermi energy,
D(ε) ∝ |ε − εF| for |ε − εF| � |�|. As, for example, Cv/T ∼ D(ε), it follows that at low
temperatures Cv ∝ T 2 in a ‘d-wave’ superconductor.

Measurements of the temperature dependence of the heat capacity [13], penetration
depth [95] and nuclear spin lattice relaxation rate [83–85] have produced apparently rather
contradictory results, with some groups arguing that their results provide evidence for fully
gapped ‘s-wave’ pairing and other groups arguing that their data favour states with nodes such
as ‘d-wave’ superconductivity. (We recently reviewed these data in rather more detail in [96].)
However, it is important to note that many of these experiments were not performed in the
T � Tc limit and therefore do not strongly differentiate between exponentially activated and
power law behaviours. The only experiment which we are aware of reporting data below about
20% of Tc is the penetration depth, λ, study of Carrington et al [95], which reports data down
to about 1% of Tc. They found a power law behaviour, but with a peculiar λ(T )− λ(0) ∝ T 3/2

8 Although the only symmetry required node for states transforming according to the Bg representation lies along the
c axis [24] and so such states will not, in general, be the same as the ‘dx2−y2 ’ state described above.
9 From here on we use the phrase ‘d wave’ to refer to both the Bg representation of C2h and the B2g representation of
D2h, unless we explicitly state otherwise.
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behaviour10 (see figure 5). The correct interpretation of this temperature dependence is not
clear at the current time, except to note that their data are quite inconsistent with an ‘s-wave’
order parameter.

In the cuprates phase sensitive probes, especially tunnelling [98] and scanning tunnelling
microscopy (STM) [99] experiments, have been particularly important for determining the
pairing symmetry. However, such experiments have not been reliably performed in the organic
charge transfer salts (see [96] for a critical review of the experiments that have been performed
to date).

An important distinction between ‘s-wave’ superconductors and ‘non-s-wave’ supercon-
ductors is the effect of non-magnetic disorder. When a quasiparticle is scattered by a non-
magnetic impurity its momentum is changed by a random amount. However, Fermi statistics
dictate that quasiparticles may only scatter from and to states near the Fermi surface. Therefore,
in a superconductor impurity scattering has the effect of averaging the order parameter over the
Fermi surface [96, 100]. For states transforming as the trivial representation (e.g. the A1g rep-
resentation of D2h, see table 3), the average of the order parameter over the Fermi surface will,
in general, be non-zero, and hence Tc is not suppressed [97]. However, for order parameters
which transform under the operations of the point group like any representation other than the
trivial representation, that is for all ‘non-s-wave’ states, the average of the order parameter
over the Fermi surface must vanish by symmetry. Therefore, it can be shown [100, 101] that
non-magnetic disorder suppresses the critical temperature of unconventional superconductors
according to the Abrikosov–Gorkov [102] formula,

ln

(
Tc0

Tc

)
= ψ

(
1

2
+ h̄

4πkBTc

1

τ

)
− ψ

(
1

2

)
, (10)

where Tc0 is the superconducting critical temperature in the pure system, ψ(x) is the digamma
function and τ is the quasiparticle lifetime due to scattering from impurities. It was recently
pointed out that a large number of experiments in the literature show that in the organic charge
transfer salts presumably non-magnetic impurities suppress Tc in just the way predicted by
the Abrikosov–Gorkov formula [96]. This has led to new experiments specifically designed
to investigate the role of disorder in organic charge transfer salts [43]. These experiments
have, however, not conclusively resolved the pairing symmetry. Indeed, these experiments
have resulted in a new puzzle. Analytis et al [43] irradiated samples of κ-(ET)2Cu(NCS)2 with
both protons and x-rays (both leading to similar results). Figure 4 shows the observed critical
temperature plotted against the residual resistivity of the sample. While this initially follows
the Abrikosov–Gorkov curve, for larger irradiation doses the suppression of Tc is weaker than
predicted. While this behaviour seems rather inconsistent with a pure ‘s-wave’ order parameter,
a detailed explanation of this phenomenon is lacking.

The vortex lattice in the Abrikosov phase can yield important information about the pairing
symmetry. In particular, for an isotropic order parameter one expects a triangular vortex
lattice [103, 104], while for an anisotropic order parameter either a square or a triangular
lattice may occur, as the energy difference between the square and triangular vortex lattices
is less than 1% even for an isotropic order parameter [104, 103]. In particular, square vortex
lattices are found in Sr2RuO4, UPt3 and YBa2Cu3O7−x [104], all of which are believed to
be unconventional superconductors. In the organic charge transfer salts a triangular lattice
is observed [105] by muon spin relaxation (μSR) experiments, which does not give a strong
indication of what the pairing symmetry is.

10 One expects λ(T )−λ(0) ∝ T for line (point) nodes and a three (two) dimensional Fermi surface and λ(T )−λ(0) ∝
T 2 for point nodes on a three dimensional Fermi surface [7].
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Figure 4. Experimental evidence for unconventional superconductivity in half-filled quasi-two-
dimensional organic charge transfer salts from measurements of suppression of Tc by disorder
(taken from [43]). It shows the variation of the critical temperature, Tc, and residual resistivity, ρ0, of
κ-(ET)2Cu(NCS)2 as disorder is introduced by irradiating the sample. The line shows the prediction
of the Abrikosov–Gorkov theory (10) for a ‘non-s-wave’ superconducting order parameter (that
transforms as a non-trivial representation). In contrast, for an ‘s-wave’ order parameter Anderson’s
theorem [97] predicts that the critical temperature is not suppressed by low levels of disorder. Thus,
the strong initial suppression of Tc as ρ0 (which is inversely proportional to the electron–impurity
scattering rate) increases is strongly suggestive of a ‘non-s-wave’ order parameter. However, it is
not currently understood why Tc is greater than is predicted by the Abrikosov–Gorkov theory for
ρ0 � 2 � cm.

We believe that a ‘dx2−y2 ’ order parameter transforming as the B2g representation of
D2h in the orthorhombic materials and a ‘d-wave’ order parameter transforming as the Bg

representation of C2h in the monoclinic crystals [24] is most consistent with currently available
data. However, there is no clear ‘smoking gun’ experiment supporting this conclusion. We
eagerly await such an experiment and in the next section we review some of the further
experiments that could be used to probe the pairing symmetry.

5.2. Possible probes of the pairing symmetry

We will now briefly discuss potential experiments that might provide an unambiguous
determination of the pairing symmetry. Particular attention should be paid to directional probes
such as ultrasonic attenuation, thermal conductivity and experiments on single crystals in a
magnetic field. Directional probes have yielded important information about the gap structure
in the cuprates [98], UPt3 [106] and Sr2RuO4 [107], so we will review what has been learnt by
such methods about these materials.

5.2.1. Effect of an orientated magnetic field in the conducting plane on the heat capacity,
nuclear spin lattice relaxation rate, penetration depth and interlayer resistance. In the vortex
state of a superconductor with nodes in the energy gap it can be shown that one effect of
the applied magnetic field is to introduce a Doppler shift to the quasiparticle energy due to
circulating supercurrents [108, 109]. Using this semiclassical theory Vekhter et al [110] showed
that in a ‘dx2−y2 ’ superconductor with a circular Fermi surface the density of states at the Fermi
level, D(EF, α), where α is the angle between the field and the antinodal direction, has a
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Figure 5. Experimental evidence for unconventional superconductivity in half-filled quasi-two-
dimensional organic charge transfer salts from the temperature dependence of the penetration depth
(relative to the penetration depth extrapolated to T = 0). The data are taken from [95]. Samples
a and b are κ-(ET)2Cu[N(CN)2]Br, while samples c and d are κ-(ET)2Cu(NCS)2 (note the non-
linear scale on the abscissa and that the data have been offset for clarity). The inset shows the
data for samples a and d on a log-log scale. It is clear that �λ ∼ (T/Tc)

3/2. For an ‘s-
wave’ gap (transforming like the identity representation) one expects �λ ∼ exp(−kBT/�0) at
low temperatures, whereas one expects a power law behaviour when there are nodes in the gap.
However, there remains an unexplained feature in these data: the power law is not what is expected
in simple theories where one expects �λ to vary either linearly or quadratically with temperature
at low temperatures for a gap with nodes. Experiments such as this and that in figure 4 suggest
that the pairing state of the organic charge transfer salts has a lower symmetry than the crystal. In
particular, we argue in section 5 that orthorhombic materials, such as κ-(ET)2Cu[N(CN)2]Br, have
order parameters which transform like the B2g representation of D2h and so may be termed ‘dx2−y2 ’
superconductors. We also argue that monoclinic materials, such as κ-(ET)2Cu(NCS)2, have order
parameters which transform like the Bg representation of C2h and so they may be termed ‘d-wave’
superconductors.

fourfold variation as a magnetic field is rotated around the highly conducting plane. D(EF, α)

is maximal when H is aligned in the antinodal direction and minimal for H parallel to the nodes.
The variation in D(EF, α) should be directly reflected in the behaviour of the electronic

contribution to the specific heat Cv(α), which is predicted [110] to show a fourfold variation
as H is rotated around the highly conducting plane. Further, Vekhter et al predict that
Cv/T ∝ √

H T for the field in the nodal direction and that Cv/T ∝ √
H T 2 for the field

in the antinodal direction. Similar effects are predicted for the H(α) dependence of the nuclear
lattice relaxation rate 1/T1T , the penetration depth λ [110] and the interlayer resistance [111].

Vekhter et al also discuss the effect of lowering the symmetry of the unit cell and thus
introducing a small ‘s-wave’ admixture to the order parameter. They show that even a very
small ‘s-wave’ component reduces the fourfold variation of D(EF, α) to a twofold variation.
However, experimentally great care would be required to detect a twofold variation in, for
example, Cv , as any slight mismanagement of the field out of the plane would cause a similar
twofold variation because of the anisotropy between Hc2‖ and Hc2⊥, where Hc2‖ is the in plane
upper critical field and Hc2⊥ is the out of plane upper critical field [112].

Deguchi et al [112] have observed fourfold variation in Cv(α) in Sr2RuO4. However,
they interpret this as evidence of an anisotropic (but nodeless) gap on the γ sheet of the Fermi
surface. In fact Deguchi et al observed two different fourfold observations as a function of
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the applied magnetic field strength. For |H| � Hc2‖ they observe an oscillation which they
attribute to the anisotropy of Hc2‖ in the basal plane of Sr2RuO4. At intermediate fields there
are no oscillations in Cv(α) and for Hc1 < |H| � Hc2‖ Deguchi et al observe oscillations
in Cv(α) that are π/4 out of phase with those in the high field region. It is these low field
oscillations that appear to be associated with the anisotropy of the superconducting gap. In
the organic charge transfer salts the in plane upper critical field is Clogston–Chandrasekhar (or
Pauli) limited [87], and there is therefore no anisotropy in Hc2‖(α), so one should not expect
the fourfold oscillations in the high field region because of variations in Hc2‖(α). However,
this observation does indicate the ease with which extraneous effects can enter this type of
experiment and therefore the care with which any such data need to be interpreted.

Two related predictions are that for a gap with line nodes Cv ∼ H
1
2 T for H �= 0 and

T � Tc in a polycrystalline sample [108, 113], and also that the heat capacity scales [114] as a
function of H

1
2 T . Both of these predictions have been confirmed for YBa2Cu3O7−x [115] and

La2−xSrx CuO4 [116].
None of the effects described in this section appear to have been studied systematically in

any of the organic charge transfer salts. Clearly such experiments could be extremely powerful
tools for elucidating the structure of the gap in the organic charge transfer salts.

5.2.2. Thermal conductivity. In the cuprates, UPt3 and Sr2RuO4 the thermal conductivity is
dominated by quasiparticles (rather than phonons) over a significant temperature range below
Tc. When quasiparticles dominate the measurements, the dependence of thermal conductivity
of a type II superconductor in the Abrikosov phase on the orientation of the magnetic field
can yield information about the structure of the superconducting order parameter. For a
superconductor with an isotropic gap one expects that the thermal conductivity, κ , varies as
cos θ where θ is the angle between the heat current and the magnetic field [117]. This prediction
has been confirmed in Nb [118]. With a thermal gradient along the a- [53] or b-axes [119] of
YBa2Cu3O7−x an additional fourfold variation in κ(θ) is observed when a magnetic field is
rotated in the basal plane. The thermal conductivity is maximal at θ = π/4 + nπ/2 for
n ∈ Z and therefore consistent with ‘dx2−y2 ’ superconductivity; i.e., the thermal conductivity
is maximal with the field aligned in the antinodal direction [120]. In contrast, in the (low
temperature, low field) B phase of UPt3 only the twofold variation of κ(θ) expected for an
isotropic gap is observed when the field is rotated in the basal plane [121]. This is consistent
with either an E2u or an E1g hybrid gap structure [106].

In Sr2RuO4 a fourfold anisotropy is observed in κ(θ) as the field is rotated in the basal
plane [122]. However, this is believed to be a result of the tetragonal crystal structure rather
than a reflection of nodes (or anisotropies) in the gap [107]. In particular, in Sr2RuO4 the
fourfold anisotropy is a much weaker than the effect in YBa2Cu3O7−x , and 20 times small than
that predicted [123] for a gap with vertical line nodes.

Izawa et al have measured the thermal conductivity of κ-(ET)2Cu(NCS)2 as a magnetic
field is rotated in the conducting (b–c) plane [93]. They observe a small (0.2% for T < 0.6 K)
fourfold variation in κ(θ). This fourfold anisotropy has its maximum when the field is at
45◦ to the b and c axes (i.e. along the x and y axes as defined in figure 1). Therefore,
Izawa et al propose that the superconducting order parameter of κ-(ET)2Cu(NCS)2 has ‘dxy ’
symmetry. However, one should be cautious of this interpretation because a ‘dxy ’ order
parameter transforms like the Ag representation of C2h (see table 4). Therefore, the anisotropy
Izawa et al observe has the same symmetry as the lattice. Therefore, the observed anisotropy is
compatible with variations caused by the crystal lattice itself and the observed effect is rather
small. Indeed Izawa et al also observed a large twofold anisotropy, which they claim is ‘mainly
due to phonons’.
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Furthermore, Izawa et al’s interpretation is based on the assumption that there is
strong interlayer coupling, which may not be correct for κ-(ET)2Cu(NCS)2. In particular,
the theory used to interpret these experiments requires that the superconductivity may be
described by a (highly anisotropic) three dimensional Ginzburg–Landau theory. However, in
κ-(ET)2Cu(NCS)2 there is a very real possibility that the layers are Josephson coupled, in
which case a three dimensional Ginzburg–Landau theory could not be applied to these results.
In particular, the interpretation by Izawa et al of the data requires that vortices are formed when
the field is parallel to the highly conducting layer.

The thermal conductivity of λ-(BETS)2GaCl4 and κ-(BETS)2FeBr4 has also been
measured by Tanatar and co-workers [124]. However, in this work the field was not rotated
in the conducting plane, so we will not discuss it further.

5.2.3. Ultrasonic attenuation. Because the velocity of sound is much less than the velocity
of an electron at the Fermi surface (vs � vF), longitudinally polarized ultrasound is only
attenuated effectively by electrons moving almost perpendicular to the direction of sound
propagation [125]. This makes longitudinal ultrasound a powerful probe of the anisotropy of
the superconducting gap; indeed, longitudinal ultrasonic attenuation experiments were among
the first to probe gap anisotropy in conventional superconductors such as Sn [80]. Transverse
ultrasound experiments are extremely sensitive to gap anisotropies as the attenuation depends
on both the direction of sound propagation and the direction of the polarization11. Such
experiments have been important for determining the gap structure of both UPt3 [127, 126]
and Sr2RuO4 [128].

Measurements of attenuation of longitudinal ultrasound perpendicular to the
highly conducting planes have been made in κ-(ET)2Cu(NCS)2 [129, 130, 59],
κ-(ET)2Cu[N(CN)2]Br [59, 131] and κ-(ET)2Cu[N(CN)2]Cl [60]. A clear coupling to the
electronic degrees of freedom is seen as the crossover from the ‘bad metal’ to the Fermi liq-
uid is observed at temperatures corresponding to the maximum in the resistivity. Indeed, the
electronic pressure–temperature phase diagram of κ-(ET)2Cu[N(CN)2]Cl has been mapped
out using ultrasound [60]. However, none of these experiments were designed to measure the
anisotropy of the superconducting order parameter.

Ultrasound experiments are complicated by the small size and the shape of single
crystals of organic charge transfer salts [130, 59]. However, for example, the crystal of
κ-(ET)2Cu(NCS)2 studied by Simizu et al [130] (which was reported to be 1.35 × 5.06 ×
1.62 mm3) is rather similar in size and shape to the crystal of UPt3 studied by Ellman et al [126]
(1 × 1 × 2.7 mm3). Therefore, there does not seem to be any intrinsic reason why transverse
ultrasound could not be used to study the order parameter of organic superconductors. Given
the importance of such experiments [127, 126, 128, 80] in UPt3, Sr2RuO4 and Sn transverse
ultrasound appear to be an excellent tool to probe the structure of the gap in organic charge
transfer salts.

5.3. Superfluid stiffness (evidence for a non-BCS ground state and pairing mechanism)

The defining property of a superconductor is the Meissner effect, i.e., perfect
diamagnetism [104]. The strength of the Meissner effect is measured by the superfluid stiffness,
Ds ≡ c2/4πλ2, where λ is the penetration depth, as the superfluid stiffness is the constant
of proportionality between the vector potential of an applied magnetic field and the induced
supercurrent. Thus, the smaller the superfluid stiffness the ‘weaker’ the superconductivity. In
the underdoped cuprates it is found that Tc ∝ Ds: this is the Uemura relation [132].

11 For a clear explanation of this phenomena see [107] and [126] and references therein.
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Figure 6. The small superfluid stiffness observed in organic charge transfer salts with low critical
temperatures provides clear evidence that the superconductivity is not described by BCS theory. The
predictions of the phase fluctuation theory proposed for the cuprates by Emery and Kivelson [133]
also overestimate the critical temperature. These data are extremely surprising as the data on the
left correspond to materials where the interactions are stronger, e.g. the effect mass is larger [141].
Thus the superfluid stiffness Ds ∝ 1/λ2, where λ is the zero temperature penetration depth, gets
smaller (and hence less like the BCS prediction) as we move away from the Mott transition. This
is unexpected, as the spectral weight in the quasiparticle peak increases as the correlations become
weaker, so we might expect the superfluid stiffness to be smallest near the Mott transition [142, 30].
Note that all of these materials are half filled [141], so doping effects cannot be invoked to explain
the data. This figure is modified from [141], while the data are from Pratt et al [138] (red/mid grey
data points), Lang et al [139] (orange/light grey data points) and Larkin et al [140] (blue/black data
points). The figure shows data for κ-ET2Cu[N(CN)2]Br (+), κ-ET2Cu(NCS)2 at several pressures
(•), λ-BETS2GaCl4 (�), β-ET2IBr2 (�) α-ET2NH4Hg(NCS)4 (�) and κ-BETS2GaCl4 (∗).

A number of exotic mechanisms have been proposed to explain the Uemura relation, and it
is natural in both the preformed pair scenario [133] and the resonating valence bond (RVB)
theory [134]. However, the Uemura relation in the underdoped cuprates is even predicted
within BCS theory [135]. In BCS theory Ds ∝ ns/m∗, where ns is the density of electrons
in the superfluid condensate. However, we stress that there is no way to directly measure ns

and, in general, ns is not required to be the same as the electron density, n, even at T = 0 (for
example, only about 10% of the atoms form the condensate in 4He at absolute zero [136, 137]).
However, BCS theory is a weak coupling theory and ns = n at T = 0. Recall that the doping, x ,
is an implicit parameter when one compares Tc and Ds in the underdoped cuprates. Therefore,
the Uemura relation can be derived from BCS theory by noting that Tc ∼ x , which is observed
experimentally for small x , and that Ds ∝ ns = n ∝ x , which assumes m∗ is independent of,
or only weakly dependent on, doping.

Pratt and co-workers [138] have systematically measured the critical temperatures and
penetration depths of a large number of organic charge transfer salts. These data, along with
those of several other groups [139, 140], are shown in figure 6. It is important to realize
that the implicit parameters in this plot are chemical substitution and pressure, which do not
change the filling factor: all of these materials are half filled [141]. The role of pressure, be it
‘chemical’ or hydrostatic, in these materials is to drive them away from the Mott transition [28].
Generically, it is also found that increasing the pressure lowers Tc. Therefore, the data points
on the left-hand side of figure 6 are closer to the Mott transition than those on the right-hand
side.
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As there is no doping of the system, BCS theory (and other weak coupling theories)
does not predict any change in ns as pressure varies Tc (whence the vertical line in figure 6).
However, one might object that, as we lower pressure and drive towards the Mott transition,
m∗ increases. If one includes this effect the prediction is that the superfluid stiffness is smallest
closest to the Mott transition. This is the opposite behaviour to that seen experimentally. It
seems extremely unlikely that using Eliashberg theory to account for strong coupling phononic
effects will rectify this essential disagreement with experiment [141]. Therefore, the data
of Pratt et al [138] provide the clearest evidence to date (i) for a non-phononic pairing
mechanism and (ii) that weakly correlated theories are insufficient to explain the observed
superconductivity in the organic charge transfer salts [141].

6. Strongly correlated models of superconductivity: frustration and RVB

Most of the early work on superconductivity in the organic charge transfer salts took weakly
correlated approaches. A comprehensive review of this work was recently published by
Kuroki [143], and, rather than duplicating that effort here, we limit ourselves to a few general
comments. The two most studied weakly correlated theories of superconductivity in the organic
charge transfer salts are the Eliashberg phononic pairing mechanism and the spin-fluctuation
pairing mechanism (with calculations most often performed within the fluctuation-exchange
(FLEX) approximation). Neither of these approaches capture the Mott transition or the large
effective mass enhancement seen in the organic charge transfer salts. Therefore, one must
clearly go beyond a weakly correlated description of the superconductivity in order to provide a
complete description of the full range of behaviours observed in the organic charge transfer salts
(cf sections 3 and 4). Further, the small superfluid stiffness observed in the low Tc materials
(figure 6 and section 5.3) cannot be accounted for within weakly correlated theories [141].

Recently a number of groups have proposed strongly correlated theories of the organic
charge transfer salts. These are based on the Hubbard model described in section 2.2. A
number of different methods have been discussed [30, 144–149], with rather similar results.
Here we focus on the simplest of these theories, the resonating valence bond (RVB) or gossamer
superconductor theory (the two names have been used interchangeably in the literature).

The celebrated BCS wavefunction [4] is

|BCS〉 =
∏

k

(
uk + vkĉ†

k↑ĉ†
−k↓

)
|0〉, (11)

where |0〉 is the vacuum state and the uk and the vk are variational parameters. The RVB
wavefunction is a projected BCS wavefunction,

|RVB〉 = P̂G|BCS〉, (12)

where

P̂G =
∑

i

(
1 − αn̂i↑n̂i↓

)
(13)

is the partial Gutzwiller projector. For α = 1 the Gutzwiller projector removes all double
occupation from the wavefunction. The α = 1 RVB state has been studied since the early days
of high Tc [10, 134]. However, as no double occupation can occur for α = 1, this state is
always insulating for half-filled systems and therefore will not give the correct description of
the organic charge transfer salts. However, if we treat α as a variational parameter [150, 151]
then some double occupation is allowed, and superconducting and metallic states may occur.

The simplest approach to this theory is to make the Gutzwiller approximation (as well as
the Hartree–Fock–Gorkov approximation implicit in the BCS state), in which one enforces
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the constraints on the fraction of doubly occupied sites only on average. This allows one
to derive a strongly correlated mean-field theory with only a few parameters [150, 151].
Studies of this theory [144, 146, 30] have shown that the superconducting state (i) undergoes
a first-order Mott transition as is seen experimentally (in the mean-field theory this is of the
Brinkman–Rice type [152]), (ii) has quasiparticles with large effective masses, which are
strongly enhanced near the Mott transition, as is seen in experiments, and (iii) has a strongly
suppressed superfluid stiffness. The RVB theory also predicts that there is a pseudogap above
the superconducting state in agreement with NMR experiments (see section 8.2). Furthermore,
it has already been shown that the insulating state of the RVB theory supports both Néel ordered
states [146, 148, 149] like that observed in the insulating state of κ-(ET)2Cu[N(CN)2]Cl and
spin-liquid states [30, 145, 149] like those observed in the insulating state of κ-(ET)2Cu2(CN)3
and β ′-[Pd(dmit)2]2Z (see section 8.5). However, to date there has been relatively little
work [149] on the comparative stability of these states as the frustration is varied. Another
important task for these theories yet to be reported is to give a detailed explanation of the small
superfluid stiffness seen in the low Tc materials (see figure 6 and section 5.3).

7. The phase diagram of the Hubbard model on the anisotropic triangular lattice

Eight years ago [25] one of us proposed a speculative zero temperature phase diagram for the
Hubbard model on an anisotropic triangular lattice. We now know significantly more about
the phase diagram because there have been many studies of this model utilizing many different
approximation schemes and numerical techniques. In figure 7 we sketch a schematic phase
diagram, which summarizes current knowledge.

7.1. The Mott transition

Only a few points on the phase diagram are known exactly. Because of perfect nesting, the Mott
metal–insulator transition occurs at an infinitesimal U for both the square lattice (t ′ = 0) and
isolated 1D chains (t = 0) [153]. For the isotropic triangular (or more correctly, hexagonal)
lattice (t ′ = t) there is no nesting at half filling and so the Mott transition occurs at a finite U .
The critical U has been estimated by a variety of methods [30, 11, 154, 155] and seems to be
about U = 10t − 15t . We therefore sketch the Mott transition as passing smoothly between
these three points in our phase diagram. Several approximations suggest that the Mott transition
is first order throughout the (zero temperature) phase diagram; however, the recent work of
Imada et al [71, 72] and the critical exponents measured by Kawagwa et al [70] has called
this into question. In particular, Imada et al propose that for some frustrations the transition is
first order while for others there is a (marginal) quantum critical point. All of the other phase
transitions shown in the schematic phase diagram (figure 7) are thought to be second order.

7.2. The superconducting states

A number of studies based on strongly correlated theories [30, 145, 146, 148, 144, 149]
suggest that superconductivity is realized on the metallic side of the Mott transition. This
superconductivity is mediated by antiferromagnetic interactions, which occur because of
superexchange. As the superexchange interactions are only relevant in the large U limit, for
small U this interaction will vanish and so will the superconductivity, leaving a metallic state
for W 	 U .

The symmetry of the anisotropic triangular lattice is represented by the C2v point group,
which is summarized in table 5. Various calculation methods indicate that in the small t ′/t limit
the superconducting order parameter transforms like the A2 representation of C2v [24, 144].
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Figure 7. Schematic diagram of the proposed zero temperature phase diagram of the Hubbard model
on the anisotropic triangular lattice at half filling. We argue throughout this review that this model
provides a qualitative description of the β, β ′, κ and λ phase organic charge transfer salts. The
central feature of the phase diagram is the Mott transition. We have argued that superconductivity
occurs on the metallic side of the Mott transition. It has been proposed that the symmetry of the
superconducting state varies as the frustration is varied and that the superconducting state breaks
time reversal symmetry when the lattice is approximately hexagonal (t ∼ t ′) [24, 144]. We label
the superconducting states by their symmetries (the colloquial names are given a more formal basis
in table 5). It should be stressed that the proposed superconducting states are strongly correlated
and RVB-like rather than weakly correlated BCS states [149, 148, 145, 146, 30, 144]. As the
correlations, which mediate the superconductivity, are reduced, we recover a metallic ground state.
For U 	 t, t ′ the Hubbard model at half filling is insulating and the spin degrees of freedom can be
described by the Heisenberg model. On the basis of the calculations reported in [156–160] we have
also argued that the insulating states should change from Néel order to spiral ordered states to a spin-
liquid as t ′/t is increased, i.e. as the frustration is varied. Near the Mott transition corrections to the
Heisenberg model, such as ring exchange, are important. This may stabilize the spin liquid [161].
This phase diagram includes all of the phases observed in the layered organic charge transfer salts
at low temperatures. We have shown elsewhere in this review (particularly sections 3, 4 and 6)
that the finite temperature behaviour of the half-filled layered organic charge transfer salts is also
described by the Hubbard model on an anisotropic triangular lattice. Hence we conclude that that
the Hubbard model on the anisotropic triangular lattice provides an excellent qualitative description
of these materials.

This is colloquially referred to as ‘dx2−y2 ’ superconductivity (see section 5.1 for a discussion
of this nomenclature). FLEX [143] and weak-coupling renormalization-group [167] studies
also predict that the superconducting state has this symmetry. However, for t = t ′ the model
has C6v symmetry. Here the ‘dx2−y2 ’ state belongs to the two-dimensional E2 representation.
This has recently led to the proposal that for t ∼ t ′ a ‘d + id’ state (which is a mixed
state transforming like a complex combination of both the A1 and A2 representations of C2v)
is realized [24, 144]. These arguments also suggest that in the large t ′/t limit the state
transforming like the A1 representation of C2v, which may be colloquially referred to as a
‘dxy + s’ state, occurs [24, 144]. We therefore sketch these different superconducting states
in figure 7. In the RVB theory these changes in the superconducting symmetry are driven by
changes in the spatial symmetry of the spin correlations [144].
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7.3. The insulating states

We now turn our attention to the insulating state. We begin by considering the large U/W limit,
in which our Hubbard model reduces to the Heisenberg model on the anisotropic triangular
lattice. This model contains two parameters, J = 4t2/U and J ′ = 4t ′2/U , which occur
because of superexchange: a second order perturbation effect. All higher order process can
be neglected because we are in the large U limit. For small J ′/J it is well established that
the Néel state is realized. Series expansions [156] show that the Néel state is stable for
J ′/J < 0.7. For J = 0 we have uncoupled one dimensional chains along the diagonal on
the unit cell. The Heisenberg model can be solved exactly in one dimension and the ground
state is a spin-liquid with deconfined spinon excitations [168]. The question of what happens
when there is a finite coupling to a second dimension (finite J ) is extremely subtle. However,
recent work [169, 156, 147] suggests that this physics does survive to a significant degree in
frustrated systems and that a spin-liquid occurs in some parts of the phase diagram with J ′ > J .
Therefore, we label the large J ′/J region of the phase diagram ‘q1D?’.

Various theoretical studies of the Heisenberg model on the anisotropic triangular lattice
have been performed. The methods used include linear spin wave theory [157] and large-N
mean field theory [158]. Both of these methods indicate that when frustration destroys Néel
order (which has the ordering wavevector �q = (π, π)) a spiral state (with ordering wavevector
�q = (q, q)) occurs. In the spiral state q varies from π , at the critical frustration where the
Néel state gives way to spiral order, to π/2, at large frustration, which is the classical value
for uncoupled chains. At J ′ = J these theories give q = 3π/2, which describes the ‘classical
120◦-state’: the classical solution of the isotropic triangular lattice [159]. In the classical 120◦-
state the spins on neighbouring sites align at an angle 120◦ apart from their nearest neighbours.
It is widely believed that the quantum analogue of the ‘120◦-state’ is the true ground state of the
Heisenberg model on the isotropic triangular lattice [156, 160]. By analogy it may be argued
that quantum-spiral states are the ground states of the Heisenberg model on the anisotropic
triangular lattice in the regime J ′ ∼ J . This is certainly what is suggested by the large-N
studies [158]. However, it is not yet clear how or at what parameter values the spiral state
changes into the spin-liquid.

At lower values of U/W (i.e. near the Mott transition) higher order perturbation processes
cannot be neglected. For example, ring exchange processes (which are of order t4/U 3) [161]
and hopping around triangular clusters (which is of order t2t ′/U 2) [11] may become important.
Both of these processes favour RVB spin-liquid states. This may explain the observation of a
spin-liquid state in the insulating phase of κ-(ET)2Cu2(CN)3 [165] and β ′-[Pd(dmit)2]2Z [170]
(see section 8.5). Therefore, we add an RVB spin-liquid phase to our sketch of the phase
diagram intervening between the quasi-one-dimensional phase and the spiral order. We also
include the enhancement of the region of stability of this phase near to the Mott transition.

8. Some outstanding problems

Before drawing our conclusions, we briefly indulge ourselves by discussing what we see as
some of the major problems in the field that we have not discussed significantly above.

8.1. Deducing parameters for the minimal models from first principles electronic structure
calculations

We have argued above that the physics of the organic charge transfer salts can be understood in
terms of the Hubbard model on the anisotropic triangular lattice. Clearly, it is vitally important,
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for this program, to know accurately what values of the parameters of this model (t , t ′ and
U ) correspond to a given material at a given pressure. Understandably, given the chemical
complexity and large unit cells of the organic charge transfer salts, most theoretical work
on the band structure of these materials has used the Huckel model [15]. (There has also
been considerable effort expended to determine the values of t and t ′ experimentally [171].)
However, recent advances in computational speed and the computational efficiency of
electronic structure codes [172] have allowed the first density functional theory (DFT) studies
of the band structures of organic charge transfer salts to be performed [17–20]. The calculations
are significantly more accurate than the Huckel calculations and there is a great need for
systematic studies of the band structures of a range of organic charge transfer salts. In particular
a detailed mapping from the experimental parameters of ‘chemical’ and hydrostatic pressure to
the theoretical parameters of t and t ′ would enormously benefit the field. Further, this would
greatly improve our ability to perform quantitative tests of theories of the Hubbard model in
the organic charge transfer salts.

To complete the mapping between the experimental and theoretical parameters we also
need to know how the dimer U varies with ‘chemical’ and hydrostatic pressure. This is a
much more difficult task. To date the most common approach has been to estimate U from
the intra-dimer hopping integral. We have shown in section 2.2 that this is not only inaccurate
(as it is based on extend Huckel calculations) but also incorrect, as correlation effects, not the
intra-dimer hopping integrals, determine the dimer U . Therefore, more accurate calculations
are required. The ‘bare’ Hubbard U of a dimer in vacuo can be straightforwardly determined
from DFT, as it is the second derivative of energy with respect to charge (U = d2 E/dq2).
However, in a crystal the effective Hubbard U is greatly decreased, as the second derivative
of energy with respect to charge contains a large contribution due to the polarizability of the
crystal. The problem of calculating the reduction in the Hubbard U due to the polarizability of
the molecules is simply a self-consistent problem in classical electrodynamics. This approach
has been successfully applied to alkali doped fullerides [47, 173]. Thus the large size and low
electron density of molecular crystals is a singular advantage when it comes to calculating the
Hubbard U . Indeed, this is such an advantage that, we believe, this makes molecular crystals
an ideal class of materials in which to study first principles approaches to strongly correlated
effects. We believe that the time is now ripe to apply this method to the organic charge transfer
salts and thus to map from ‘chemical’ and hydrostatic pressure to the Hubbard U .

If both of these procedures were accurately carried out then we would have a direct
mapping between the Hubbard model and experiment. This would allow very direct testing
of the hypothesis that the Hubbard model provides the correct microscopic description of the
organic charge transfer salts. It would also allow for the experimental testing of the various
approximations used to study the Hubbard model. Therefore, this mapping would not only be
extremely important to the community interested in the organic charge transfer salts for their
own sake, but would make the organic charge transfer salts an even more important test-bed for
theories of strongly correlated quantum many-body systems than they are already. In figure 8
we sketch our best guess of which parameters correspond to which materials, based on the
calculations performed thus far and comparison of the observed behaviour of these materials
with figure 7. Given the comments above this is clearly a very rough procedure.

8.2. Is there a pseudogap?

NMR experiments on the organic charge transfer salts show a large decrease in the spin lattice
relaxation rate, 1/T1T , the Knight shift, Ks, and the Korringa ratio, 1/T1T K 2

s , below about
50 K [83–85] (see figure 9). In this section we ask whether these experiments indicate the
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Figure 8. The same phase diagram as is shown in figure 7 with the labels removed (for clarity) and
the names of some materials added. The position of the name indicates our guestimate of where
that material sits on the proposed phase diagram; the white arrows indicate the proposed effect
of pressure. This is very rough, and accurately determining the details of the parameter values
corresponding to specific materials at particular pressures is a major challenge (see in particular
section 8.1). The following shorthand is used in the figure: κ-Cl is κ-(ET)2Cu[N(CN)2]Cl, κ-
CN3 is κ-(ET)2Cu2(CN)3, κ-Br is κ-(ET)2Cu[N(CN)2]Br, κ-NCS is κ-(ET)2Cu(NCS)2, β-I3

is β-(ET)2I3 and β’-dmit is β ′-[Pd(dmit)2]2Z. La2CuO2, the parent compound of the cuprates,
is shown with a large U and on the square lattice (t ′ = 0) to emphasize the similarities
between the organics and the cuprates [162]. It is known experimentally that J ′/J ≈ 3 in
Cs2CuCl4 [163]. Cs2CuCl4 has a spirally ordered ground state at very low temperatures, but
shows a region of spin-liquid-like behaviour at higher temperatures [164], which may indicate
that the spin-liquid state is energetically close to the ground state and that coupling in the third
dimension plays an important role in the real material. κ-(ET)2Cu2(CN)3 shows a spin-liquid
ground state [165], while the β ′-[Pd(dmit)2]2Z salts seem to be on the border between magnetic
ordering and spin-liquid behaviour. The nature of this magnetic ordering is not yet clear. Pressure
drives κ-(ET)2Cu[N(CN)2]Cl from a the Néel state via the superconducting state to normal metal,
while κ-(ET)2Cu[N(CN)2]Br is so close to the Mott transition that it can be driven insulating by
deuteration of the ET molecule. Huckel calculations suggest that β-(ET)2I3 (and other β phase
salts) have t ′ > t [166]. If our speculative phase diagram is correct then this suggests that they
have a different pairing symmetry to the κ-phase materials [144, 24]. This also suggests that
the superconducting states of κ-(ET)2Cu2(CN)3 and β ′-[Pd(dmit)2]2Z may break time reversal
symmetry [144, 24].

opening of a gap-like structure at the Fermi energy. The pseudogap phase in the cuprates has
attracted a great deal of attention [174], yet there has been very little work on understanding the
origin of these experimental effects in the organic charge transfer salts. Clearly a good starting
point to investigate this effect in the organic charge transfer salts would be to follow a number
of the experimental and theoretical approaches that have proved fruitful in investigating the
pseudogap in the cuprates.

One of the most important questions about the pseudogap in the cuprates has been whether,
and if so how, it relates to superconductivity. The Nernst effect is much larger in a type-
II superconductor than it is in a normal metal (because vortices carry entropy extremely
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Figure 9. Is the suppression of the nuclear spin relaxation rate, 1/T1, evidence for a pseudogap?
These data (from [175]) shows the temperature dependence of 1/T1T in κ-(ET)2Cu[N(CN)2]Br at
various pressures (1 bar (•), 1.5 kbar (�), 3 kbar (♦) and 4 kbar (◦)). Rather similar effects are
seen across a range layered organic charge transfer salts [85]. In materials that are close to the Mott
transition a peak in 1/T1T is observed at around 50 K. This is not expected in weakly interacting
systems. However, a pseudogap is predicted by the RVB theory of superconductivity [30] and
appears to be a rather natural feature of extensions to dynamical mean field theory which include
some spatial correlations [176, 177]. A detailed theoretical understanding of these data is still
lacking, as are further experiments probing the possibility that there is a pseudogap in the organic
charge transfer salts.

efficiently). Therefore, the discovery of a large Nernst effect in the pseudogap regime [178]
of the cuprates is suggestive of superconducting fluctuations playing an important role in the
pseudogap [133]. In this context, studies of the temperature dependence of the Nernst effect
in materials which show the unexpected NMR behaviour {e.g., κ-(ET)2Cu[N(CN)2]Br and
κ-(ET)2Cu(NCS)2 } would be extremely interesting.

Theoretical avenues could also be productively pursued. In particular, we need to discover
the correct phenomenological description of the NMR data. The first question which needs to
be addressed is whether the NMR data can be explained without invoking a gap in the density
of states. For example, the maximum in 1/T1T occurs at a temperature very close to that where
the crossover from the ‘bad metal’ to the Fermi liquid occurs. Could the origin of the maximum
then be simply related to recovery of a Fermi-liquid Korringa-like behaviour from the local
moment (Heisenberg) physics associated with the ‘bad metal’ [179–181] (charge fluctuations
happen on significantly slower timescales than spin fluctuations in the ‘bad metal’)? Or, is a gap
in the density of states necessary to describe the observed phenomena? A phenomenological
description of the data will obviously provide clues to the appropriate microscopic description.
Given the success of DMFT in describing many of properties of the organic charge transfer salts
(see section 3.1), extensions to DMFT to include non-local effects seem an obvious avenue
to explore [176]. Cellular DMFT (CDMFT) [176] and the dynamical cluster approximation
(DCA) [176] are two such approaches. These approaches have already provided significant
insights into the pseudogap in the cuprates; in particular, the so-called Fermi arcs seen in
angle resolved photoemission spectroscopy (ARPES) experiments [182, 183] on the cuprates
appear to be a natural feature in CDMFT [177]. Therefore, studies of the Hubbard model on
an anisotropic triangular lattice within CDMFT or the DCA would be an extremely interesting
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approach12. It is interesting to note that many of the features present in the CDMFT description
of the pseudogap are captured (in a somewhat cruder form) by the RVB theory (discussed in
section 6). In particular, the RVB theory predicts a pseudogap [151, 146, 144, 30]. Therefore,
a detailed understanding of the NMR experiments on the organic charge transfer salts will
provide a stringent test of this theory.

8.3. Low Tc materials

Most of the attention to superconducting materials has been focused on materials with high
transition temperatures and the region around the Mott transition. But, recently, the work of
Pratt, Blundell and co-workers [141, 138, 142] has shown the importance of materials with low
critical temperatures for understanding superconductivity in the organic charge transfer salts
(see figure 6 and section 5.3 for a discussion of this work). However, there remain very few
data on the low Tc materials. We believe that an extensive understanding of the phenomenology
of these low Tc materials is a vital prerequisite of a more detailed understanding of the
superconducting states of all of the organic charge transfer salts. Therefore, there is a desperate
need for more experimental and theoretical work on these materials.

8.4. Synthetic chemistry

It goes almost without saying that condensed matter physics cannot proceed without high
quality samples. As such, synthetic chemistry plays the central role in the study of organic
charge transfer salts, for, without it, the field could neither exist nor progress. Historically,
much of the synthetic work in this field has focused on discovering new organic charge transfer
salts. However, we would like to stress the importance of the less obviously glamorous work
of producing higher quality samples of materials which have already been extensively studied.
As we have seen in this review, there are many outstanding problems in the flavours of organic
charge transfer salts that have been with us for the last 20 years. Many of these problems
would be made significantly more tractable if new kinds of data were available. For example,
a tricrystalline experiment, of the type so important in the cuprates [98], could lay to rest once
and for all questions about the pairing symmetry in the organic charge transfer salts.

Perhaps the most pressing need for improvement in sample quality is size. Neutron
scattering has been extremely important for our understanding of the cuprates [184],
NaxCoO2 [185, 11], and many other strongly correlated materials. This is mostly because
neutrons provide direct information about the spin degrees of freedom which are of vital
importance in strongly correlated materials such as the organic charge transfer salts. Therefore,
perhaps the single greatest impediment to the field is the lack of high quality single crystals
for neutron studies. Taniguchi and co-workers have recently demonstrated that large single
crystals can be grown [186], and one can only eagerly await the results of neutron scattering
experiments on this sample and the growth of similarly large samples of other salts.

8.5. Do κ-(ET )2Cu2(C N)3 and/or β ′-[Pd(dmit)2]2 Z have spin-liquid ground states?

A recent series of experiments on κ-(ET)2Cu2(CN)3 [187, 165] by Shimizu and co-workers has
sparked considerable interest in the theoretical community [144, 161, 30, 149, 56, 145, 188–195].
This is because Shimizu et al have gathered strong evidence that κ-(ET)2Cu2(CN)3 may
have a spin-liquid ground state. A spin-liquid is a state in which there exist well formed

12 One CDMFT study of the Hubbard model on an anisotropic triangular lattice has appeared in the literature but this
problem was not addressed in that paper [149].
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Figure 10. Evidence for spin-liquid ground states in κ-(ET)2Cu2(CN)3 and β ′-[Pd(dmit)2]2Z.
The left panel (modified from [165]) compares the temperature dependences of the magnetic
susceptibilities, χ , of κ-(ET)2Cu2(CN)3 and κ-(ET)2Cu[N(CN)2]Cl. Both measurements
were performed in the ambient pressure Mott insulating phases of the two compounds. In
κ-(ET)2Cu[N(CN)2]Cl a rapid upturn in the susceptibly is observed at ∼25 K as a result of the
Néel transition. Remarkably, no magnetic ordering transition is observed in κ-(ET)2Cu2(CN)3
down to the lowest temperatures studied (32 mK). Fits of series expansion data (lines in
figure) to the measured susceptibility [165] show that the exchange interaction, J , is about
250 K in both materials. This had led to the suggestion that it is the greater frustration in
κ-(ET)2Cu2(CN)3 that leads to a spin-liquid ground state. (In κ-(ET)2Cu2(CN)3 J ′/J ∼ 1
whereas in κ-(ET)2Cu[N(CN)2]ClJ ′/J < 1.) The right panel shows similar measurements
in β ′-[Pd(dmit)2]2Z [170]. These data are also well described by series expansions for the
isotropic triangular lattice (solid lines in figure with J marked). Except for X = Et2Me2Sb,
the β ′-[Pd(dmit)2]2Z salts do eventually order magnetically, but this suggests that it may be
possible to use chemistry and/or uniaxial stress to tune the β ′-[Pd(dmit)2]2Z salts across the
antiferromagnetic/spin-liquid phase boundary. Understanding the microscopic nature of these spin-
liquid states and why they are stabilized over the 120◦-state which appears to be the ground state of
Heisenberg model on the isotropic triangular lattice presents major challenges to theory.

local moments which do not magnetically order. Importantly, a spin-liquid should possess
all of the symmetries of the crystal. In a particularly beautiful demonstration of the spin-
liquid behaviour in κ-(ET)2Cu2(CN)3, Shimizu et al compared the spin susceptibility of
κ-(ET)2Cu2(CN)3 with that of κ-(ET)2Cu[N(CN)2]Cl (see figure 10). Both κ-(ET)2Cu2(CN)3
and κ-(ET)2Cu[N(CN)2]Cl have well formed local moments with spin 1

2 . In both systems the
Heisenberg exchange interaction is about 250 K [25, 165]. However, the frustration is signif-
icantly larger in κ-(ET)2Cu2(CN)3 than it is in κ-(ET)2Cu[N(CN)2]Cl [165, 56, 196]. The
susceptibility of κ-(ET)2Cu[N(CN)2]Cl diverges at ∼25 K as the material undergoes the Néel
transition. In contrast, no magnetic transition is observed in κ-(ET)2Cu2(CN)3 down to 32 mK
(the lowest temperature studied by Shimizu et al).

Rather similar behaviour (also shown in figure 10) has been observed by Kato et al [170]
in the series β ′-[Pd(dmit)2]2Z, where Pd(dmit)2 is the acceptor molecule 1,3-dithiol-2-thione-
4,5-dithiolate (C3S5), Z = Me4Y or Et2Me2Y, Y = P or Sb, Me = CH3 and Et = C2H5.
So far, this has not attracted so much attention from theorists as the κ-(ET)2Cu2(CN)3
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results, but these materials are also excellent candidates for the observation of spin-liquid
states. The susceptibility of the β ′-[Pd(dmit)2]2Z compounds is much more reminiscent of
that of κ-(ET)2Cu2(CN)3 than that of κ-(ET)2Cu[N(CN)2]Cl. In particular the Et2Me2Sb
salt shows no indications of magnetic ordering down to 4.3 K (the lowest temperature studied
thus far, although magnetic impurities cause a Curie tail and make this somewhat difficult to
substantiate) [197]. Further, the range of Curie temperatures seen in the salts that do eventually
order magnetically [197] suggests that varying the cation, Z, in the β ′-[Pd(dmit)2]2Z series
allows one to tune the frustration and thus the proximity to the spin-liquid state.

The clear theoretical challenge is to explain why a spin-liquid ground state is stable in these
materials13. Simply appealing to the geometrical frustration inherent in the triangular lattice is
insufficient, as it is all but certain that the 120◦-state is the ground state of the Heisenberg
model on a triangular lattice (see section 7). A great deal of theoretical effort has already
been expended on this problem [161, 30, 149, 56, 145, 188–195]. The idea that proximity to
the Mott transition allows perturbation terms not included in the Heisenberg model to become
large seems particularly promising. However, this question is far from settled yet and will
doubtless be the basis of much debate in the future.

9. Conclusions

We have seen above that the predicted behaviour of the Hubbard model on the anisotropic
triangular lattice provides good qualitative agreement with experiments on the organic charge
transfer salts. This success is not just limited to the κ phases, but the model applies equally
well to the β , β ′, and λ phases: in spite of the chemical and structural differences between
these materials the physics is essentially the same. As the exact solution of this model is
not yet known, various approximation schemes must be used to discover the true behaviour
of the model. Perhaps the most notable successes of this model are the explanation of
the metallic state and the Mott transition in terms of dynamical mean field theory (DMFT)
discussed in section 3.1. However, recent theories of superconductivity based on the resonating
valence bond (RVB) state appear to explain many of the features of the superconducting
state. An important test of the RVB theory will be a detailed comparison of its prediction
of a pseudogap with experiments (such as NMR or Nernst effect) on the strongly correlated
metallic state just above Tc. An important challenge for this theory is to explain the small
superfluid stiffness seen far from the Mott transition, i.e. in compounds with low critical
temperatures.

There are many exciting challenges facing the field. Some are old—like finding an
experiment which decisively settles the questions about the pairing symmetry; while others are
extremely new—like understanding the spin-liquid state in κ-(ET)2Cu2(CN)3. An important
challenge is also to increase the quantitative detail of the predictions of theory. This is required,
not only because of intrinsic interest in the organic charge transfer salts themselves, but also
because the organic charge transfer salts provide a wonderful test-bed for many of the most
important ideas in the theory of strongly correlated materials. In particular, the Mott transition
remains perhaps the phenomenon of central importance to strongly correlated physics, and the
organic charge transfer salts are one of only a handful of systems where the Mott transition
can be driven by varying U/W as Mott originally envisioned [198] rather than by doping.
We have highlighted one possible approach to increasingly quantitative prediction, that of
parameterizing minimal models, although there are several other approaches which might be
profitable, such as LDA + DMFT [199].

13 Even if the compounds do order at some extremely low temperature the spin-liquid state is clearly at least very
energetically competitive.
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We hope that this review has made it clear that the organic charge transfer salts are a
playground for quantum many-body physics14. Many of the most important phenomena in
strongly correlated physics are found in the organic charge transfer salts, for example the Mott
transition, unconventional superconductivity, frustrated antiferromagnetism, and spin-liquids.
Further, the organic charge transfer salts are exceptionally clean systems (as is evidenced by
the beautiful quantum oscillations observed at low temperatures [171, 41, 40]). But, perhaps,
what makes the organic charge transfer salts most attractive is the relative ease with which the
strength of correlations can be controlled via hydrostatic pressure or chemistry [8, 28]. Thus,
the study of the organic charge transfer salts is an important branch of strongly correlated
physics. The lessons learned from the organic charge transfer salts are already having
significant impact in other strongly correlated systems. For example, the spin-liquid phase
of Cs2CuCl4 has a great deal in common with the insulating phases of κ-(ET)2Cu2(CN)3 and
β ′-[Pd(dmit)2]2Z [56] and the ‘Curie–Weiss metal’ seen in Nax CoO2 is essentially a doped
analogue of the ‘bad metal’ observed in the organic charge transfer salts [11]. All of these
phenomena arise from the interplay of strong correlations with frustration, which can be so
elegantly studied in the organic charge transfer salts.
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